Metrology Temperature Block series

Beamex® MB140, MB155, MB425, MB700

User Guide

Table of Contents

1	В	efore You Start	1
	1.1	Introduction	1
	1.2	Symbols Used	1
	1.3	Safety Information	2
	1.0	3.1 Warnings	
		3.2 Cautions	
		CE Comments	
		4.1 EMC Directive	
		4.2 Immunity Testing	
		4.3 Emission Testing4.4 Low Voltage Directive (Safety)	
		Authorized Service Centers	
	1.0	Authorized Octivide Octilicis	C
2	S	pecifications and Environmental Conditions	7
	2.1	Specifications	
	2.2	Environmental Conditions	
3	Q	uick start	11
	3.1	Unpacking	11
	3.2	Setup	12
	3.3	System Setup	13
	3.4	Display	13
	3.4	4.1 Measure	13
	3.5	Setting the Temperature	14
	3.5	5.1 Set-point Setup	
	3.6	Reference Probe (-R models only)	
		6.1 Probe Connection	
	3.6	6.2 Measure Temperature	16
4	D:	arts and controls	17
T	4.1	Back panel	
	4.1	Front panel	
	4.2	Front Panel Display	
	4.3	Front Panel Buttons	
	4.5	Accessories	22

5	C	ontrol	ler operation	23
	5.1	Main S	Screen	23
	5.2	Main N	Menu	25
	5.	2.1 Tei	mp Menu	25
		5.2.1.1	Set	26
		5.2.1.2	Preset	27
		5.2.1.3	Setup	28
		5.2.1.4	Cutout	
	5.	2.2 Re	f Menu (-R instruments only)	30
		5.2.2.1	Select	
		5.2.2.2	Setup	
		5.2.2.3	Test	
	_	5.2.2.4	Focus (-R instruments only)	
	5.		og Menu	
		5.2.3.1	Select	
		5.2.3.2	Setup	
	E	5.2.3.3		
	5.	2.4 Sy 5.2.4.1	stem MenuSetup menu	
		5.2.4.1	Cal Menu	
		5.2.4.3	Pass	
		5.2.4.4	Info (view only)	
	5.3	Menu	Structure	
	0.0	Mona	ou dotaro	02
6	П	inital	communication interface	57
Ü	6.1			
		•		
			tuprial Operation	
			·	
	6.2		and Syntax	
	6.3	Comm	ands by Function or Group	59
	6.4	Serial	Commands - Alphabetic Listing	61
	6.5	Non-S	CPI Process Commands	77
	6.6	Non-S	CPI Command by Function or Group	78
7	IV	lainter	nance	83
	7.1	Regula	ar Metrology Temperature Block performance analysis	83
8	Ti	rouble	shooting	85
	8.1		eshooting	

Figures

Figure 1 Probe connector wiring	15
Figure 2 Metrology Temperature Block back panel view	17
Figure 3 Metrology Temperature Block front panel view	19
Figure 4 Metrology Temperature Block insert options	22
Figure 5 Main screen display	23
Figure 6 MAIN MENU	25
Figure 7 TEMPERATURE MENU	25
Figure 8 CONTROL SETPOINT menu	26
Figure 9 SELECT POINT menu	27
Figure 10 PRESETS SETUP menu	28
Figure 11 CUTOUT SETTINGS menu	28
Figure 12 REFERENCE MENU	30
Figure 13 PROBE SELECT menu	30
Figure 14 SETUP PROBE menu	31
Figure 15 PROBE TEST menu	34
Figure 16 FOCUS SELECT menu	
Figure 17 PROGRAM MENU	
Figure 18 PROGRAM SELECT menu	
Figure 19 PROGRAM SETUP menu	37
Figure 20 PROGRAM RUN menu	38
Figure 21 SYSTEM MENU	39
Figure 22 SETUP MENU	
Figure 23 DISPLAY SETTINGS menu	40
Figure 24 MEASUREMENT SETTINGS menu	41
Figure 25 OPERATION SETTINGS menu	42
Figure 26 COMMUNICATION SETUP menu	
Figure 27 CALIBRATION MENU	
Figure 28 SETUP CONTROLLER menu	45
Figure 29 SENSOR SETTINGS menu	46
Figure 30 CUTOUT CALIBRATION menu	
Figure 31 REFERENCE CALIBRATION menu	
Figure 32 PASSWORD SETUP	50
Figure 33 SYSTEM INFO menu	51
Figure 34 RS-232 Wiring	57

MBXXX Series Metrology Temperature Block

Tables

Table 1 Symbols	1
Table 2 Metrology Temperature Block Specifications	7
Table 3 Built-in Readout Specifications	8
Table 4 Matching Certificate Values to MBXXX ITS-90 Coefficients	. 32
Table 5 Setting Coefficients Rtpw, a8, b8, a4, and b4	. 32
Table 6 Commands by function or group	. 59

1 Before You Start

1.1 Introduction

Beamex Metrology Temperature Blocks (MB140, MB155, MB425, and MB700) are designed to be stable heat sources that can be used in a laboratory or field environment. With a calibrated display and an optional built-in reference thermometer input (designated with "-R"), Metrology Temperature Blocks may also be used as a reference standard.

Metrology Temperature Blocks feature interchangeable probe inserts that fit various sized diameter probes.

The Metrology Temperature Blocks' controller uses a PRT sensor and thermoelectric modules or heaters to achieve stable, uniform temperatures throughout the block.

The LCD display continuously shows many useful operating parameters including the block temperature, block stability, heating and cooling status, and current set-point. The temperature may be easily set with the control buttons to any desired temperature within the temperature block's specified range.

Metrology Temperature Blocks are designed for laboratory performance that can be used anywhere. With proper use, the instrument will provide continued accurate calibration of temperature sensors and devices. Before use, the user should be familiar with the warnings, cautions, and operating procedures of the block as described in the users manuals.

1.2 Symbols Used

Table 1 lists the symbols that may be used on the instrument or in this manual.

Table 1 Symbols

Symbol	Description	Symbol	Description
\sim	AC (Alternating Current)		PE Ground
\sim	AC-DC	<u></u>	Hot Surface (Burn Hazard)
•	Battery		Read the User's Guide (Important Information)
< €	Complies with European Union directives	0	Off
	DC		On
	Double Insulated	∰ us	Canadian Standards Association

1

Symbol	Description	Symbol	Description
4	Electric Shock	C	C-TICK Australian EMC mark
=	Fuse	X	The European Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC) mark.
CATI	OVERVOLTAGE (Installation) CATEGORY II, Pollution Degree 2 per IEC1010-1 refers to the level of Impulse Withstand Voltage protection provided. Equipment of OVERVOLTAGE CATEGORY II is energy-consuming equipment to be supplied from the fixed installation. Examples include household, office, and laboratory appliances.		

1.3 Safety Information

Use this instrument only as specified in this guide. Otherwise, the protection provided by the instrument may be impaired. Refer to the safety information in the Warnings and Cautions sections below.

The following definitions apply to the terms "Warning" and "Caution".

- "Warning" identifies conditions and actions that may pose hazards to the user.
- "Caution" identifies conditions and actions that may damage the instrument being used.

1.3.1 Warnings

To avoid personal injury, follow these guidelines.

GENERAL

DO NOT use this instrument in environments other than those listed in the User's Guide.

Inspect the instrument for damage before each use. **DO NOT** use the instrument if it appears damaged or operates abnormally.

Follow all safety guidelines listed in this guide.

Calibration equipment should only be used by trained personnel.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Before initial use, or after transport, or after storage in humid or semi-humid environments, or anytime the Metrology Temperature Block has not been energized for more than 10 days, the instrument needs to be energized for a "dry-out" period of 2 hours before it can be assumed to meet all of the safety requirements of the IEC 1010-1. If

the product is wet or has been in a wet environment, take necessary measures to remove moisture prior to applying power such as storage in a low humidity temperature chamber operating at 50°C for 4 hours or more.

DO NOT use this instrument for any application other than calibration work. The instrument was designed for temperature calibration. Any other use of the instrument may cause unknown hazards to the user.

Completely unattended operation is not recommended.

DO NOT place the instrument under a cabinet or other structure. Overhead clearance is required. Always leave enough clearance to allow for safe and easy insertion and removal of probes.

Use of this instrument at **HIGH TEMPERATURES** for extended periods of time requires caution.

Completely unattended high temperature operation is not recommended due to safety hazards that can arise.

If the instrument is used in a manner not in accordance with the equipment design, the operation of the Metrology Temperature Block may be impaired or safety hazards may arise.

This instrument is intended for indoor use only.

BURN HAZARD

Each Metrology Temperature Block is equipped with a Block Temperature Indicator (front panel **LED HOT** indicator – Patent Pending) even when the instrument is unplugged. When the indicator is flashing, the instrument is not powered and the temperature of the block is above 50°C. When the indicator is illuminated, always on, the instrument is powered and the block temperature is above 50°C.

DO NOT turn the instrument upside down with the inserts in place; the inserts will fall out.

DO NOT operate instrument in any orientation other than vertical (block opening face up). Risk of fire or burn hazard may result due to excessive heat build up.

DO NOT operate on a flammable surface or near flammable materials.

DO NOT touch the block access surface of the instrument.

The block vent may be very hot due to the fan blowing across the heater block of the Metrology Temperature Block.

The calibration block temperature of the Metrology Temperature Block is the same as the actual display temperature, for example, if the instrument is set to 700°C and the display reads 700°C, the block is at 700°C.

The air over the block can reach temperatures greater that 200°C for high temperature (400°C and higher) Metrology Temperature Blocks.

Probes and inserts may be hot and should only be inserted and removed from the instrument when the instrument is operating at temperatures below 50°C.

DO NOT turn off the instrument at temperatures higher than 100°C. This could create a hazardous situation. Select a set-point less than 100°C and allow the instrument to cool before turning it off.

The high temperatures present in Metrology Temperature Blocks designed for operation at 300°C and higher may result in fires and severe burns if safety precautions are not observed.

ELECTRICAL HAZARD

These guidelines must be followed to ensure that the safety mechanisms in this instrument will operate properly. This instrument must be plugged into a 230 VAC (115 VAC optional), AC only electric outlet. The power cord of the instrument is equipped with a grounding plug for your protection against electrical shock hazards. It must be plugged directly into a properly grounded receptacle. The receptacle must be installed in accordance with local codes and ordinances. Consult a qualified electrician. **DO NOT** use an extension cord or adapter plug.

If supplied with user accessible fuses, always replace the fuse with one of the same rating, voltage, and type.

Always replace the power cord with an approved cord of the correct rating and type.

HIGH VOLTAGE is used in the operation of this equipment. SEVERE INJURY or DEATH may result if personnel fail to observe safety precautions. Before working inside the equipment, turn power off and disconnect power cord.

1.3.2 Cautions

To avoid possible damage to the instrument, follow these guidelines:

To properly calibrate the Metrology Temperature Block, the "Fan Limit" must be set to "Auto."

DO NOT leave the insert(s) in the instrument for prolonged periods. Due to the high operating temperatures of the instrument, the inserts should be removed after each use and buffed with a Scotch-Brite® pad or emery cloth (see the Maintenance section of the Users Guide).

Always operate this instrument at room temperature between 5°C and 50°C (41°F and 122°F). Allow sufficient air circulation by leaving at least 15 cm (6 in) of clearance around the instrument. Overhead clearance is required. **DO NOT** place the instrument under any structure.

DO NOT interchange inserts between Metrology Temperature Block models. The inserts provided with the instrument as well as any additional inserts ordered are model specific.

Component lifetime can be shortened by continuous high temperature operation.

DO NOT use fluids to clean out the block. Fluids could leak into electronics and damage the instrument.

DO NOT introduce any foreign material into the probe hole of the insert. Fluids, etc. can leak into the instrument causing damage.

DO NOT change the values of the calibration constants from the factory set values. The correct setting of these parameters is important to the safety and proper operation of the block.

DO NOT slam the probe sheath or inserts into the block. This type of action can cause a shock to the sensor and affect the calibration

The instrument and any thermometer probes used with it are sensitive instruments that can be easily damaged. Always handle these devices with care. DO NOT allow them to be dropped, struck, stressed, or overheated.

DO NOT operate this instrument in an excessively wet, oily, dusty, or dirty environment. Always keep the block and inserts clean and clear of foreign material.

The Metrology Temperature Block is a precision instrument. Although it has been designed for optimum durability and trouble free operation, it must be handled with care. Always carry the instrument in an upright position to prevent the probe inserts from dropping out. The convenient handle allows for hand carrying the instrument.

If a mains supply power fluctuation occurs, immediately turn off the instrument. Power bumps from brown-outs could damage the instrument. Wait until the power has stabilized before re-energizing the instrument.

The probe and the block may expand at different rates. Allow for probe expansion inside the block as the block heats. Otherwise, the probe may become stuck in the block.

Most probes have handle temperature limits. Be sure the air temperature above the Metrology Temperature Block does not exceed the probe handle's temperature limit. If the probe handle limits are exceeded, the probe may be permanently damaged.

1.4 CE Comments

1.4.1 EMC Directive

Beamex's equipment has been tested to meet the European Electromagnetic Compatibility Directive (EMC Directive, 89/336/EEC). The Declaration of Conformity for your instrument lists the specific standards to which the instrument was tested.

This instrument was designed specifically as a test and measurement device. Compliance to the EMC directive is through IEC 61326-1 Electrical equipment for measurement, control and laboratory use - EMC (1998).

As noted in the IEC 61326-1, the instrument can have varying configurations. The instrument was tested in a typical configuration with shielded RS-232 cables.

1.4.2 Immunity Testing

This instrument has been designed and tested to meet electromagnetic compatibility (EMC) requirements for electrical equipment for measurements, control, and laboratory use (IEC 61326-1). However, the reference thermometer input of models MB140R

and MB155R may show some susceptibility to a strong electromagnetic field having a frequency of approximately 194 MHz.

1.4.3 Emission Testing

The instrument fulfills the limit requirements for Class A equipment but does not fulfill the limit requirements for Class B equipment. The instrument was not designed to be used in domestic establishments.

1.4.4 Low Voltage Directive (Safety)

In order to comply with the European Low Voltage Directive (73/23/EEC), Beamex's equipment has been designed to meet the IEC 1010-1 (EN 61010-1) and the IEC 1010-2-010 (EN 61010-2-010) standards.

1.5 Authorized Service Centers

Please contact Beamex to coordinate service on your product:

2 Specifications and Environmental Conditions

2.1 Specifications

Table 2 Metrology Temperature Block Specifications

Specification	MB140	MB155	MB425	MB700
Range	–45°C to 140°C (–49°F to 284°F)	–30°C to 155°C (–22°F to 311°F)	35°C to 425°C (95°F to 797°F)	50°C to 700°C (122°F to 1292°F)
Display Accuracy ²	±0.1°C full range		±0.1°C: 35°C to 100°C ±0.15°C: 100°C to 225°C ±0.2°C: 225°C to 425°C	±0.2°C: 50°C to 425°C ±0.25°C: 425°C to 660°C
Stability ¹	±0.005°C	full range	±0.005°C: 35°C to 100°C ±0.008°C: 100°C to 225°C ±0.01°C: 225°C to 425°C	±0.005°C: 50°C to 100°C ±0.01°C: 100°C to 425°C ±0.03°C: 425°C to 700°C
Axial Uniformity ² (40 mm [1.6 in])	±0.08°C: -45°C to -35°C ±0.04°C: -35°C to 0°C ±0.02°C: 0°C to 50°C ±0.07°C: 50°C to 140°C	±0.025°C: -30°C to 0°C ±0.02°C: 0°C to 50°C ±0.05°C: 50°C to 155°C	±0.05°C: 35°C to 100°C ±0.09°C: 100°C to 225°C ±0.17°C: 225°C to 425°C	±0.09°C: 50°C to 100°C ±0.22°C: 100°C to 425°C ±0.35°C: 425°C to 700°C
Axial Uniformity ² (60 mm [2.3 in])	±0.1°C: -45°C to -35°C ±0.04°C: -35°C to 0°C ±0.02°C: 0°C to 50°C ±0.07°C: 50°C to 140°C	±0.025°C: -30°C to 0°C ±0.02°C: 0°C to 50°C ±0.07°C: 50°C to 155°C	±0.05°C: 35°C to 100°C ±0.1°C: 100°C to 225°C ±0.2°C: 225°C to 425°C	±0.1°C: 50°C to 100°C ±0.25°C: 100°C to 425°C ±0.4°C: 425°C to 700°C
Axial Uniformity ² (80 mm [3.15 in])	N/A	±0.05°C: -30°C to 0°C ±0.04°C: 0°C to 50°C ±0.15°C: 50°C to 155°C	±0.06°C: 35°C to 100°C ±0.12°C: 100°C to 225°C ±0.23°C: 225°C to 425°C	±0.15°C: 50°C to 100°C ±0.30°C: 100°C to 425°C ±0.45°C: 425°C to 700°C
Radial Uniformity	±0.01°C	full range	±0.01°C: 35°C to 100°C ±0.02°C: 100°C to 225°C ±0.025°C: 225°C to 425°C	±0.01°C: 50°C to 100°C ±0.025°C: 100°C to 425°C ±0.04°C: 425°C to 700°C
Loading Effect (with reference thermometer)	±0.02°C: -45°C to -35°C ±0.005°C: -35°C to 100°C ±0.01°C: 100°C to 140°C	±0.005°C: -30°C to 0°C ±0.005°C: 0°C to 100°C ±0.01°C: 100°C to 155°C	±0.01°C full range	±0.02°C: 50°C to 425°C ±0.04°C: 425°C to 700°C
Hysteresis	±0.0	25°C	±0.04°C	±0.07°C
Operating Range1		5°C to 40°C (41°F to 104°F)	
Block Depth	160 mm (6.3 in)		203 mm (8 in)	
Resolution		0.001	l° C/F	
Display		LCD, °C or °F ı	user-selectable	
Key Pad	Ten key v	with decimal and +/- key. Fu	nction keys, menu key, and °	C/°F key.
Cooling Time	44 min: 23°C to -45°C 19 min: 23°C to -30°C 19 min: 140°C to 23°C	30 min: 23°C to –30°C 25 min: 155°C to 23°C	220 min: 425°C to 35°C 100 min: 425°C to 100°C	235 min: 700°C to 50°C 153 min: 700°C to 100°C
Heating Time	32 min: 23°C to 140°C 45 min: -45°C to 140°C	44 min: 23°C to 155°C 56 min: –30°C to 155°C	27 min: 35°C to 425°C	46 min: 50°C to 700°C
Size	366	66 x 203 x 323 mm (14.4 x 8 x 12.7 in) [height x width x depth]		
Weight	14.2 kg (31.5 lb)	14.6 kg (32 lb)	12.2 kg (27 lb)	14.2 kg (31 lb)

Specification	MB140	MB155	MB425	MB700
Power	115 V (±10%), 50/60 Hz, 550 W 230 V (±10%), 50/60 Hz, 550 W		115 V (±10%), 50/60 Hz, 1025 W 230 V (±10%), 50/60 Hz, 1025 W	
System Fuse Ratings	115 V: 6.3 A 250 V 230 V: 3.15 A 250 V		115 V: 10 A 250 V 230 V: 5 A 250 V	
Internal Fuse Ratings	F1: 8 A 250 V F2: 1 A 250 V F4: 4 A 250 V		n/a	
Computer Interface	RS-232 Interface			
Safety	OVERVOLTAGE (Installation) CATEGORY II, Pollution Degree 2 per IEC-61010-1:2001			

^{&#}x27;Specifications are given with an ambient temperature of 23°C (73.4°F). Range, display accuracy, axial uniformity, loading effect, cooling time, and heating time are subject to the ambient temperature and may be affected outside the "Full Accuracy" temperature range

Table 3 Built-in Readout Specifications

Specifications	Built-in Reference Input	
Temperature Range ¹	-200°C to 962°C (-328°F to 1764°F)	
Resistance Range	0Ω to 400Ω , auto-ranging	
Characterizations	ITS-90 subranges 4, 6, 7, 8, 9, 10, and 11 Callendar-Van Dusen (CVD): R0, ALPHA, DELTA, BETA	
Resistance Accuracy ¹	0Ω to 20Ω : 0.0005Ω 20Ω to 400Ω : 25 ppm (0.0025%)	
Temperature Accuracy ^{1,2}	10Ω PRTs: ±0.013°C at 0°C ±0.013°C at 50°C ±0.014°C at 155°C ±0.014°C at 225°C ±0.019°C at 425°C ±0.028°C at 700°C	25Ω and 100Ω PRTs: ±0.005°C at -100°C ±0.007°C at 0°C ±0.011°C at 155°C ±0.013°C at 225°C ±0.019°C at 425°C ±0.027°C at 661°C
Temperature Resolution	0.001° C/F	
Operating Range	5°C to 40°C (41°F to 104°F)	

^{&#}x27;Specifications are given with an ambient temperature of 23°C (73.4°F). Resistance accuracy and temperature accuracy are subject to the ambient temperature and may be affected outside the "Full Accuracy" temperature range.

2.2 Environmental Conditions

Although the instrument has been designed for optimum durability and trouble-free operation, it must be handled with care. The instrument should not be operated in an excessively dusty or dirty environment. Maintenance and cleaning recommendations can be found in the Maintenance section.

- The instrument operates safely under the following environmental conditions:
- temperature range: 5-40°C (41-104°F)
- ambient relative humidity: maximum 80% for temperature <31°C, decreasing linearly to 50% at 40°C

²Refer to the Maintenance section in the User's Guide regarding maintaining the accuracy of the instrument.

The temperature range may be limited by the reference probe connected to the external "Probe" connection of the Metrology Temperature Block. Does not include sensor probe accuracy. It does not include probe uncertainty or probe characterization errors.

Specifications and Environmental Conditions

Environmental Conditions

• pressure: 75kPa-106kPa

• mains voltage: within $\pm 10\%$ of nominal

• vibrations in the calibration environment should be minimized

• altitude: less than 2,000 meters

• indoor use only

3 Quick start

3.1 Unpacking

Unpack the instrument carefully and inspect it for any damage that may have occurred during shipment. If there is shipping damage, notify the carrier immediately.

Verify that the following components are present:

MB140

- MB140 Metrology Temperature Block
- Insert: MB140-MH2, MB140-MH1, or MB140-B
- Power Cord
- RS-232 Cable
- · User's Guide
- Technical Guide
- Calibration Certificate
- LEMO Connector (-R units only)
- Block Insulator
- Tongs (insert removal tool)

MB155

- MB155 Metrology Temperature Block
- Insert: MB155-MH2, MB155-MH1, or MB155-B
- Power Cord
- RS-232 Cable
- · User's Guide
- · Technical Guide
- Calibration Certificate
- LEMO Connector (-R units only)
- Block Insulator
- Tongs (insert removal tool)

MB425

- MB425 Metrology Temperature Block
- Insert: MB425-MH2, MB425-MH1, or MB425-B
- Power Cord
- RS-232 Cable
- User's Guide
- Technical Guide

- Calibration Certificate
- LEMO Connector (-R units only)
- Block Insulator
- Tongs (insert removal tool)

MB700

- MB700 Metrology Temperature Block
- Insert: MB700-MH2, MB700-MH1, or MB700-B
- Power Cord
- RS-232 Cable
- User's Guide
- Technical Guide
- Calibration Certificate
- LEMO Connector (-R units only)
- Tongs (insert removal tool)

If all items are not present, contact an Authorized Service Center.

3.2 Setup

NOTE: The instrument will not heat, cool, or control until the "CONT ENABLE" parameter is set to "On." Refer to Set-Point Setup on page 16 to set this parameter.

Place the block on a flat surface with at least 15 cm of free space around the instrument. Overhead clearance is required. DO NOT place under a cabinet or structure.

Plug the Metrology Temperature Block power cord into a mains outlet of the proper voltage, frequency, and current capability (see Specifications for power details). Observe that the nominal voltage corresponds to that indicated on the back of the block.

Carefully place the probe insert into the block. Probe inserts should be of the smallest hole diameter possible still allowing the probe to slide in and out easily. Inserts of various sizes are available from Beamex. The block must be clear of any foreign objects, dirt and grit before the insert is installed. The insert is installed with the two small tong holes positioned upward.

Turn on the power to the temperature block by toggling the switch on the power entry module. After a brief self-test, the controller should begin normal operation. The main screen will appear within 30 seconds. If the instrument fails to operate, please check the power connection.

The display will show the block temperature, and wait for user input before heating or cooling to current set-point.

3.3 System Setup

Before using the instrument, the parameters in this section need to be setup (Main Menu: SYSTEM|SETUP MENU).

3.4 Display

Language

English, French, and Chinese are the only languages supported by the instrument. Select the preferred language using the right/left arrow keys and press "ENTER" to accept the selection.

Decimal

The decimal of the numbers in the instrument can be either a comma or decimal. Select the desired decimal type using the right/left arrow keys and press "ENTER" to accept the selection.

3.4.1 Measure

Stability Limit

NOTE: Metrology Temperature Blocks should not be expected to operate better than the stability limit specification set forth in the Specifications section of this guide. Therefore, the minimum setting of the stability limit should not be less than the stability specification set forth in the Specifications section.

The stability limit of the instrument is the parameter which allows the instrument to notify the user when it has achieved the stability limit set in this parameter. There are two notifications: visual and audible. The visual notification is always active. When the instrument is operating within the stability limit, the stability parameter on the main screen will remain highlighted as long as the instrument is within the given specification, otherwise the parameter will not be highlighted. The audible, if enabled, alerts the user once per set-point when the instrument achieves the set stability limit. Use the numeric keys to set the desired stability limit and press "ENTER" to accept the new stability limit.

Example:

A specific calibration process requires the instrument be operating within $\pm 0.1^{\circ}$ C. "0.1" would be entered into the stability limit parameter. When the instrument is within $\pm 0.1^{\circ}$ C, "STAB: X.XXX°C" will be highlighted and the audible alarm (if enabled) will notify the user that the instrument is operating within $\pm 0.1^{\circ}$ C. Use the numeric keys to set the desired stability limit and press "ENTER" to accept the new stability limit.

Stability Alarm (STAB ALARM)

The audible alarm described in "Stability Limit" is turned on or off using this parameter. Select either "On" or "Off" using the right/left arrow keys and press "ENTER" to accept the selection.

3.5 Setting the Temperature

The users guide explains in detail how to set the temperature set-point of the temperature block using the front panel keys. The procedure is summarized here.

3.5.1 Set-point Setup

- From the main screen, press "ENTER" once to access the "SETUP SET POINT" menu.
- 2. Press +/- to set a positive or negative temperature. If the "-" symbol is not present, the temperature is assumed to be positive. Use the number keys to set the desired temperature. Press "ENTER" to set the temperature and continue setting up the set-point information. If the other information in the set-point menu does not need to be edited at this point, press "EXIT" to return to the main screen

NOTE: Each time the instrument is turned off and back on, the "CONT ENABLE" parameter is set to "Off".

- 3. The "CONT ENABLE" parameter enables or disables active heating or cooling of the instrument. This parameter must be set to "On" for the instrument to heat or cool. Using the right/left arrow keys, select "On" to allow the instrument to heat or cool or select "Off" to disable heating and cooling.
- 4. The scan rate of the instrument can be set from 0.1 to 99°C/min, however the actual scan rate is limited by the natural heating or cooling rate of the instrument. Use the number keys to set the desired scan rate and press "ENTER".

When the set-point temperature is changed the controller will switch the thermoelectric modules or heater on or off to raise or lower the temperature. The displayed block temperature will gradually change until it reaches the set-point temperature. The block may require 5 to 10 minutes to reach the set-point depending on the span. Another 5 to 10 minutes is required to stabilize with $\pm 0.1^{\circ}$ C of the set-point. Ultimate stability may take 15 to 20 minutes more of stabilization time.

3.6 Reference Probe (-R models only)

The reference probe section of the user manual explains in detail how to set up the reference probe of the temperature block using the front panel keys. The procedure is summarized here.

3.6.1 Probe Connection

A PRT is the only type of probe that is supported by the reference thermometer input. The PRT (RTD or SPRT) probe connects to the reference thermometer input using a 6-pin LEMO connector. Figure 1 shows how a four-wire probe is wired to the six-pin LEMO connector. One pair of wires attaches to pins 1 and 2 and the other pair attaches to pins 4 and 5 (pins 1 and 5 source current and pins 2 and 4 sense the potential). If a shield wire is present it should be connected to pin 3 or carried through the connector.

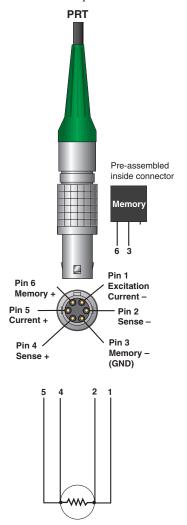


Figure 1 Probe connector wiring

A two-wire probe can also be used with the reference thermometer. It is connected by attaching one wire to both pins 1 and 2 of the plug and the other wire to both pins 4 and 5. If a shield wire is present it should be connected to pin 3. Accuracy may be significantly degraded using a two-wire connection because of lead resistance.

3.6.2 Measure Temperature

To make temperature measurements using your probe, the following parameters must be set up:

- 1. From the main screen, press the "MENU" button. Access the reference probe select menu (REF MENU|SELECT). Select "Probe 1" using the right or left arrow button. Press "ENTER" to accept the probe to be used.
- 2. To enable "Probe 1," use the 4 or 5 button to turn the reference probe "On." Press "ENTER" to accept the selection.
- 3. Press the "Setup" soft key (Main Menu: REF MENUISETUP). In the reference probe setup menu, select "Probe 1" and press "ENTER".
- 4. Select the calibration type for the probe (ITS-90 or CVD) using the 4 or 5 keys. Press "ENTER" to accept the calibration type.
- 5. Use the numeric keys to enter the serial number and calibration coefficients of the probe. Press "ENTER" after each parameter is entered to accept the new parameter value. Calibration coefficients can be found on a report of calibration that was shipped with your probe. If no coefficients can be found, contact the manufacturer or vendor of the probe for assistance. If the probe is out of calibration, Beamex offers calibration services. Contact an Authorized Service Center for assistance on obtaining a calibration for the probe.
- 6. After the reference probe has been enabled, the focus of the temperature display can be set. The focus is disabled if the reference probe is disabled. From the reference menu, press the "Focus" soft key (Main Menu: REF MENUIFOCUS). Use the 4 or 5 key to select reference focus. Press "ENTER" to accept the selection. The largest temperature on the display will now be the reference temperature.

4 Parts and controls

This section describes the exterior features of the Metrology Temperature Block.

4.1 Back panel

The following are found on the back of the Metrology Temperature Block (see Figure 2).

Figure 2 Metrology Temperature Block back panel view

Power Cord Plug (1)

The power supply cord attaches to the back panel. Plug the cord into an AC mains supply appropriate for the voltage range as specified in the specifications tables.

Power Switch (2)

The power switch is located on the power entry module of the unit at the bottom left of the back panel.

Serial Connector (3)

The serial connector is a 9-pin subminiature D type located on the back panel. The serial (RS-232) interface can be used to transmit measurements and control the operation of the Metrology Temperature Block.

Fan (4)

The fan is necessary to keep the internal components cool. Always make sure air can flow freely underneath and around the instrument.

4.2 Front panel

The following are found on the front of the Metrology Temperature Block (see Figure 3, on opposite page).

Display (1)

The display is a 320 x 240 pixel monochrome graphics LCD device with a bright CCFT backlight. The contrast can be adjusted using the \triangle or ∇ arrow buttons on the front panel. The display is used to show current control temperature, measurements, status information, operating parameters, and soft key functions.

Soft Keys (2)

The soft keys are the four buttons immediately below the display (labeled F1 to F4). The functions of the soft keys are indicated on the display above the buttons. The function of the keys may change depending on the menu or function that is selected.

Buttons (3)

The front panel buttons allow you to select menus, enter numeric data for operating parameters, move the cursor on the display, change the display layout, and adjust the contrast of the display.

Reference Thermometer Connection (-R models only) (4)

The 6-pin LEMO connector on the front panel allows a reference probe to be attached to the unit for use with the reference thermometer function of the unit.

Block Temperature Indicator (Patent Pending)(5)

The block temperature indicator lamp allows users to know when the block temperature is above 50°C.

- 1 DISPLAY
- 2 SOFT KEYS
- **3 NUMERIC KEYS**
- 4 REFERENCE THERMOMETER CONNECTION
- 5 BLOCK TEMPERATURE INDICATOR
- 6 ENTER
- 7 MENU
- 8 EXIT
- 9 °C/°F
- 10 ARROW KEYS

Figure 3 Metrology Temperature Block front panel view

4.3 Front Panel Display

The front panel display is shown in detail in Figure 3, on previous page and its features are described below

Control Focus

The most recent block temperature measurement is shown in large digits in the box at the top of the screen. While viewing the main screen, the left arrow key enables the control focus view. The main control parameters are shown in the box at the bottom left of the screen. The current program selected is shown in the box at the bottom right of the screen

Reference Focus (-R models only)

The most recent reference thermometer measurement is shown in large digits in the box at the top of the screen. While viewing the main screen, the right arrow key enables the reference focus view. The main control parameters are shown in the box at the bottom left of the screen and the current program selected is shown in the box at the bottom right of the screen.

Heating/Cooling Status

Just above the "PROGRAM" box there is a bar graph that will indicate HEATING, COOLING, or CUTOUT. This status graph indicates the current level of heating or cooling if the instrument is not in cutout mode.

Soft Key Functions

The four boxes at the bottom of the display indicate the functions of the soft keys (F1–F4). These functions change with each menu.

Editing Windows

While setting up and operating the instrument, you are often required to enter or select parameters. Editing windows appear on the screen when necessary to show the values of parameters and allow you to change them.

4.4 Front Panel Buttons

The functions of the front panel buttons are described below and shown in Figure 3, on previous page.

Soft Keys (2)

The four soft keys (F1–F4) just below the display are used to select menus or menu functions. The functions of the soft keys are indicated in text just above the soft keys on the display. The functions of the soft keys change depending on the selected menu. Pressing the "EXIT" key allows the user to exit from a sub-menu or window and returns to the previous menu or main screen.

Numeric Keys (3)

The ten number keys, the decimal point, and +/- keys are used to enter numeric data.

ENTER (6)

The "ENTER" key is used to enter a new parameter value or option or as a shortcut key to the set-point menu while viewing the main screen. When the value of any parameter is changed "ENTER" must be pressed to accept the new value. If the up/down arrow, exit or menu buttons are pressed before "ENTER", the cursor will leave the parameter and any changes made to it will be canceled. Within a window with a list of parameters, pressing "ENTER" will also move the cursor down to the next parameter. If the cursor is at the bottom of the list, pressing "ENTER" with or without changing the parameter will exit the window. The "ENTER" button may also be used during some operations to affirm or continue with an action or choice.

NOTE: The "ENTER" button must always be pressed after changing a parameter to accept the new value or option.

MENU (7)

The menu key allows the user to access all parameter and settings menus. From the main menu, the user can use the soft keys to access submenus and functions.

EXIT (8)

The "EXIT" key is used to cancel an operation, exit a window, as a shortcut key to the cutout menu while viewing the main screen, or return from a lower menu to a higher menu. In any window, pressing "EXIT" will immediately exit the window and go to the previous window or menu. If a parameter is entered or changed and "EXIT" is pressed before "ENTER", the change will be canceled. During some operations the "EXIT" key may be used to cancel the operation. If a cutout condition exists, press the "EXIT" key to access the Cutout menu. To reset the cutout, select the "RESET CUTOUT" parameter and select "YES" using the 4 or 5 keys. Press "ENTER" to reset the Cutout.

°C/°F (9)

The "C/F" key allows the user to change the display units from Celsius to Fahrenheit and vice-versa while viewing the main screen.

Up/Down ($\triangle \nabla$)Arrows (10)

The up and down arrow keys have three functions: move the cursor through a list of parameters in a window, scroll through parameters list that is longer than can be displayed, and, while viewing the main screen, change the contrast of the display.

NOTE: Parameter entry will abort if the up or down arrow key is pressed before "ENTER". Therefore, the up or down arrow keys can be used to cancel a parameter change.

Left/Right (⟨ | ⟩) Arrows (11)

The left and right arrow keys have three functions: move from digit to digit while editing a parameter, select or change an option for some parameters, and change focus from control to reference or from reference to control. Remember, "ENTER" must always be pressed to save a new value or option selected.

4.5 Accessories

- MB140-MH2, MB140, metric, miscellaneous holes
- MB140-MH1, MB140, metric, 0.25 inch reference, miscellaneous holes
- MB140-B, Insert, Blank, MB140
- MB155-MH2, MB155, metric miscellaneous holes
- MB155-MH1, MB155, metric, 0.25 inch reference, miscellaneous holes
- MB155-B, Insert, Blank, MB155
- MB425-MH2, MB425, metric miscellaneous holes
- MB425-MH1, MB425, metric, 0.25 inch reference, miscellaneous holes
- MB425-B, Insert, Blank, MB425
- MB700-MH2, MB700, metric miscellaneous holes
- MB700-MH1, MB700, metric, 0.25 inch reference, miscellaneous holes
- MB700-B, Insert, Blank, MB700

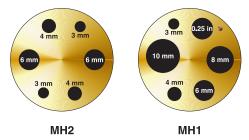


Figure 4 Metrology Temperature Block insert options.

5 Controller operation

This chapter discusses in detail how to operate the Metrology Temperature Block temperature controller or reference thermometer using the front control panel. Using the front panel keys and liquid crystal display (LCD) the user may monitor the block temperature, set the temperature set-point in °C or °F, monitor the heater output power, set the cutout set-point, set the operating parameters, and configure the communication interface. A diagram of the full menu structure can be found at the end of this section. When active, menu keys are selected using the soft keys (F1-F4).

5.1 Main Screen

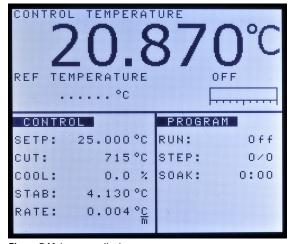


Figure 5 Main screen display

The LCD on the front panel allows direct viewing of the control temperature (actual block temperature), reference thermometer temperature, heating or cooling power, current set-point information and current program information. The temperature displayed is either in °C or °F. The displayed temperature units can easily be changed by pressing the C/F key on the front panel.

CONTROL TEMPERATURE

This is the temperature of the block as measured by the control sensor. The controller heats or cools the block to force the control temperature equal to the set-point.

REF TEMPERATURE

This is the temperature measured by an external reference thermometer attached to the Probe input. It can be displayed in large digits by setting the focus using the left and right buttons or the FOCUS menu function.

HEATING, COOLING, CUTOUT

This shows the status of heating or cooling or the cutout when activated. The gauge below indicates the relative heating or cooling power.

CONTROL - SETP (Set-point)

This is the current set-point.

CONTROL - CUT (Cutout)

This is the current cutout set-point.

CONTROL - HEAT/COOL

This shows the relative heating or cooling power (duty cycle) in percent.

CONTROL - STAB (Stability)

This shows the stability of the block. It is measured over two minutes and is calculated as twice the standard deviation of individual control temperature measurement during that time. When the stability is within the set limit this line is highlighted.

CONTROL - RATE

This shows the rate of change of the control temperature. It is measured over two minutes and is calculated as the average slope.

PROGRAM - RUN

This shows the active sequence (ramp-and-soak) program number or off if the program is stopped.

PROGRAM - STEP

This shows the set-point step number and total points of the sequence program.

PROGRAM - SOAK

This shows the soak timer for the sequence program. It is reset to the set soak minutes when the sequence advances to the next set-point, counts down hours and minutes when stability is reached, and advances the set-point when 0:00 is reached.

5.2 Main Menu

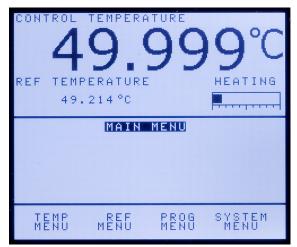


Figure 6 MAIN MENU

The main menu allows access to all main submenus which allow the user to setup the instrument as desired and to change system parameters as needed.

5.2.1 Temp Menu

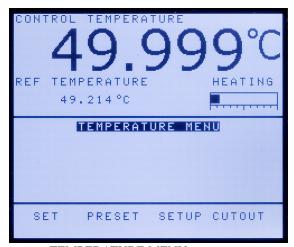


Figure 7 TEMPERATURE MENU

The Temp Menu (TEMPERATURE MENU) contains all Metrology Temperature Block functions related to temperature setup.

5.2.1.1 Set

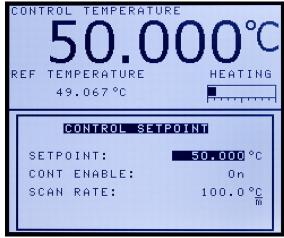


Figure 8 CONTROL SETPOINT menu

The Set (CONTROL SETPOINT) menu allows the user to change the set-point, enable or disable active heating or cooling, and specify the heating or cooling rate of the instrument. This menu window may be accessed quickly by pressing "ENTER" from the main screen.

SETPOINT

The Setpoint (Set-point) parameter can be set to any value within the range and with resolution as given in the specifications. Be careful not to exceed the safe upper temperature limit of any device inserted into the block. The soft cutout should be properly adjusted to help prevent this occurrence.

CONT ENABLE

NOTE: Each time the instrument is turned off and back on, the "CONT ENABLE" parameter is set to "Off".

The Cont Enable (Control Enable) parameter controls whether the instrument heats or cools. This parameter must be set to "On" for the instrument to heat or cool. Use the right or left arrow keys to select "On" (the instrument heats or cools) or "Off" (disables heating and cooling).

SCAN RATE

The Scan Rate parameter can be set such that when the set-point is changed, the Metrology Temperature Block heats or cools at a specified rate (degrees per minute) until it reaches the new set-point.

The scan rate can be set from 0.1 to 500 °C/min (0.2 to 900 °F/min). However, the maximum scan rate is limited by the natural heating or cooling rate of the instrument, which is often less than 100 °C/min, especially when cooling.

The scan rate can be adjusted using the numeric keys. Once the scan rate has been set, press "ENTER" to set the new scan rate.

5.2.1.2 Preset

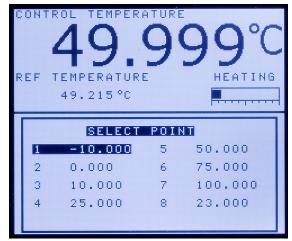


Figure 9 SELECT POINT menu

The Preset (SELECT POINT) menu allows the user to quickly recall and conveniently change the instrument to a previously programmed set-point. The arrow keys can be used to select a preset point. The numeric keys 1–8 may be used to quickly select a set-point. Once the desired point is selected, press "ENTER" to accept the selection. The instrument will now heat or cool as needed to achieve the new set-point.

5.2.1.3 Setup

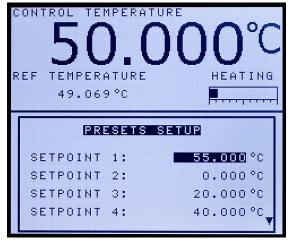


Figure 10 PRESETS SETUP menu

The Setup (PRESETS SETUP) menu allows the user to set up all eight preset set-points stored in the controller. Setpoints can be quickly selected using the Preset function. Use the Up/Down arrows to scroll through the set-points. The number keys can be used to enter the desired set-point value. Once the desired value has been set, press the "ENTER" key to accept the value. Repeat the previously described procedure until all points are set to the desired values.

5.2.1.4 Cutout

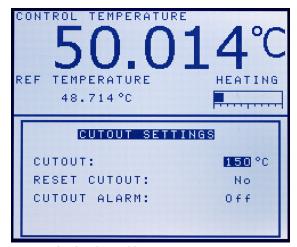


Figure 11 CUTOUT SETTINGS menu

The Cutout (CUTOUT SETTINGS) menu allows the user to set the cutout temperature and to reset the cutout from the display. The cutout temperature is programmable by

the operator from the front panel of the controller. As a protection against software or hardware fault or user error, the temperature block is equipped with the adjustable cutout device that shuts off power to the heat source if the block temperature exceeds a set value. This feature protects the instrument and probes from excessive temperatures.

If the cutout is activated because of excessive block temperature, power to the heat source shuts off and the instrument cools. The heat source remains in cutout mode and active heating and cooling is disabled until the user manually resets the cutout. If the over-temperature cutout has been triggered, the instrument displays "CUTOUT" above the duty cycle bar graph, which indicates a cutout condition. The instrument remains in cutout mode until the temperature is reduced and the cutout is reset. The block temperature must drop a few degrees below the cutout set-point before the cutout can be reset.

For safety reasons, the cutout only has one mode — manual reset. Manual reset mode means the cutout must be reset by the operator after the temperature falls below the set-point.

To quickly access the reset cutout function press the "EXIT" key from the main screen

CUTOUT

The Cutout parameter can be set to any temperature over the range of the instrument. The cutout should be set within 5-10° of the safety limit of the equipment being calibrated or used with the Metrology Temperature Block.

RESET CUTOUT

If the Metrology Temperature Block exceeds the temperature set in the soft cutout menu or if it exceeds the maximum operating temperature of the instrument, a cutout condition occurs. If this happens, the instrument enters cutout mode and will not actively heat or cool until the user accesses this parameter and selects "Yes".

CUTOUT ALARM

The Cutout Alarm parameter can be set to ON or OFF. If the Cutout Alarm is ON when a cutout condition exists, the alarm will sound every 15 seconds.

5.2.2 Ref Menu (-R instruments only)

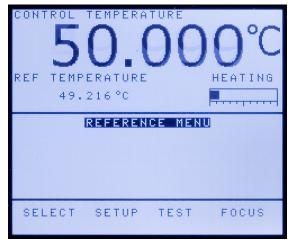


Figure 12 REFERENCE MENU

The Ref Menu (REFERENCE MENU) allows all parameters related to the reference thermometer function of the instrument to be accessed. The parameters found in this menu affect the performance, accuracy, and display type of thermometers used.

5.2.2.1 Select

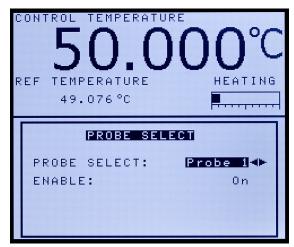


Figure 13 PROBE SELECT menu

The Select menu (PROBE SELECT) allows the user to select and enable the probe that will be used as the reference probe. Parameters for two probes can be stored in the instrument. If the proper probe is not selected, readings acquired from the thermometer will not be accurate. It is important that the proper probe be selected when using the reference thermometer.

PROBE SELECT

The Select parameter can be set to Probe 1 or Probe 2. The probe being used with the instrument should be selected from this menu.

ENABLE

The Enable parameter enables or disables the reference thermometer function of the instrument. This function should be disabled when not in use. In order for the reference probe to function, the reference probe function of the instrument needs to be enabled from this menu. By selecting "On", the instrument reads the temperature or resistance of the probe connected to the reference input on the front of the instrument.

5.2.2.2 Setup

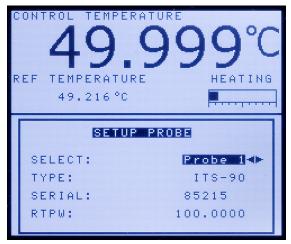


Figure 14 SETUP PROBE menu

The Setup (SETUP PROBE) menu is used to set up the reference probe(s). The instrument is only compatible with Platinum Resistance Thermometers (PRTs) with ITS-90 or Callendar Van-Dusen calibrations. No other types of coefficients are supported.

The probe serial number and coefficients can be found on the calibration certificate that was shipped with the probe. If the probe requires calibration, contact an Authorized Service Center to inquire about calibration services offered by Beamex.

While editing the reference probe serial number, there are two soft keys, BACK and DONE. BACK acts as a "backspace" key to allow an incorrect digit or character to be deleted. The DONE key causes the entered serial number to be accepted and returns to the main reference probe editing window.

SELECT

The SELECT parameter is used to choose which probe is to be setup.

TYPE (ITS-90)

The TYPE parameter can be ITS-90 or Callendar Van-Dusen. The ITS-90 option is for PRTs calibrated and characterized using the International Temperature Scale of 1990 (ITS-90) equations. Subranges 4, and 7 through 11 are supported. The parameters that appear when ITS-90 is selected are "Serial" (Serial Number), "RTPW", "COEF A", "COEF B", "COEF C", "COEF A4", and "COEF B4". These should be set with the corresponding values that appear on the calibration certificate of the PRT. The parameter "RTPW" takes the triple point of water resistance, often labeled "R0.01" or "R(273.16K)" on the certificate. Parameters "COEF A", "COEF B", "COEF C" take the a_n, b_n and c_n coefficients where *n* is a number from 7 to 11. Parameters "COEF A4" and "COEF B4" take the a₄ and b₄ coefficients on the certificate. Any ITS-90 parameter of the instrument that does not have a corresponding coefficient on the PRT's certificate must be set to 0.

The following table shows which parameter to set for each of the coefficients that may appear on the certificate. The example that follows demonstrates how to set the ITS-90 parameters for certain cases.

NOTE: If the certificate has two sets of coefficients, one set for "zero-power" calibration and one set for 1 mA calibration, use the coefficients for the 1 mA calibration.

Table 4 Matching Certificate Values to MBXXX ITS-90 Coefficients

MBXXX ITS-90 Coefficient	Certificate Value
COEF A	a7, a8, a9, a10, or a11
COEF B	b7, b8, b9, or 0
COEF C	c7 or 0
COEF A4	a4
COEF B4	b4

Example 1:

A PRT was calibrated to ITS-90 and its calibration certificate states values for coefficients Rtpw, a_4 , b_4 , a_8 , and b_8 . Set the instrument's parameters with values from the certificate as follows.

Table 5 Setting Coefficients Rtpw, a8, b8, a4, and b4

MBXXX Coefficient	Certificate Value
RTPW	Rtpw
COEF A	a8
COEF B	b8
COEF C	0
COEF A4	a4
COEF B4	b4

TYPE (CVD)

The CVD (Callendar-Van Dusen) conversion is for RTD probes that use the Callendar-Van Dusen equation:

$$r(t[^{\circ}C]) = \begin{cases} R_0 \left\{ 1 + \alpha \left[t - \delta \frac{t}{100} \left(\frac{t}{100} - 1 \right) \right] & t \ge 0 \\ R_0 \left\{ 1 + \alpha \left[t - \delta \frac{t}{100} \left(\frac{t}{100} - 1 \right) - \beta \left(\frac{t}{100} - 1 \right)^3 \right] \right\} & t < 0 \end{cases}$$

The parameters that appear when CVD is selected are "Serial" (Serial Number), "R0", "ALPHA", "DELTA" and "BETA", which can be set by the user. For IEC-60751, LEMO-43760 or ASTM E1137 sensors, the coefficients for R0, ALPHA, DELTA, and BETA are 100.0, 0.00385055, 1.499786, and 0.10863 respectively.

Some probes may be provided with A, B, and C coefficients for the Callendar-Van Dusen equation in the following form:

$$r(t[^{\circ}C]) = \begin{cases} R_0 \left(1 + At + B^2 \right) & t \ge 0 \\ R_0 \left[1 + At + Bt^2 + C \left(t - 100 \right) t^3 \right] & t < 0 \end{cases}$$

The A, B, and C coefficients can be converted to Alpha, Beta and Delta coefficients using the following equation:

$$\alpha = A + 100B$$
 $\delta = -\frac{100}{\frac{A}{100B} + 1}$ $\beta = -\frac{10^8 C}{A + 100B}$

TYPE (Res)

The Res (Resistance) option displays the resistance, in ohms, of the selected reference probe.

5.2.2.3 Test

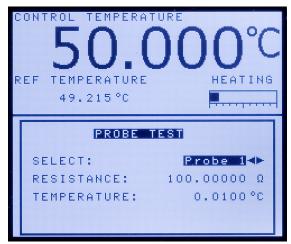


Figure 15 PROBE TEST menu

The Test (PROBE TEST) menu is used to test the parameters for a given probe. To test the parameters of the selected probe, input a test resistance and read the calculated temperature for that resistance.

SELECT

The SELECT parameter is the probe number of the probe to be tested.

RESISTANCE

The test resistance of the sensor should be entered in the RESISTANCE parameter.

TEMPERATURE (view only)

The TEMPERATURE parameter is the calculated temperature of the current probe based on the resistance set in the resistance parameter. This parameter is for display only and cannot be changed.

5.2.2.4 Focus (-R instruments only)

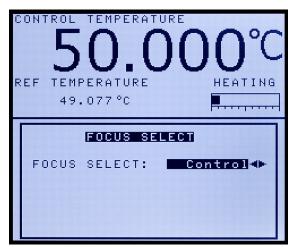


Figure 16 FOCUS SELECT menu

NOTE: The Focus (FOCUS SELECT) menu is only active if the reference thermometer option is installed and the reference thermometer function enabled.

This menu determines which temperature, control or reference thermometer, is displayed as the largest text on the screen.

FOCUS SELECT

Select "Control" and the control temperature of the heat source is displayed as the largest text on the screen. Select "Reference" and the reference thermometer temperature is displayed as the largest text on the screen.

NOTE: From the main screen, the right or left arrow keys set the control and reference focus respectively.

5.2.3 Prog Menu

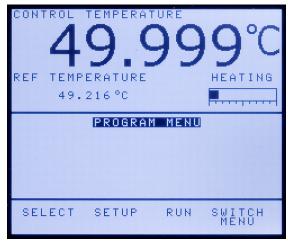


Figure 17 PROGRAM MENU

The Prog Menu (PROGRAM MENU) allows the user to access the ramp and soak feature. This feature automatically cycles the Metrology Temperature Block between temperatures while holding at each temperature for the length of time set by the user.

5.2.3.1 Select

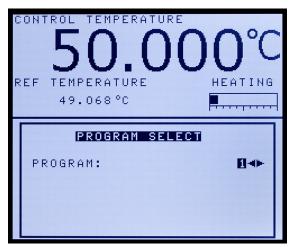


Figure 18 PROGRAM SELECT menu

The Select (PROGRAM SELECT) menu is used to set up and store up to four programs. One of the four programs available can be selected in this menu.

5.2.3.2 Setup

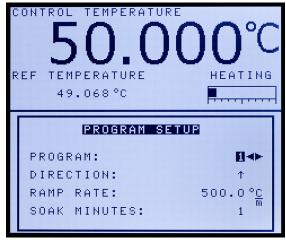


Figure 19 PROGRAM SETUP menu

The Setup (PROGRAM SETUP) menu allows specific settings to be set up and stored for each program (1-4). If desired, each program can have unique settings.

PROGRAM

The PROGRAM parameter is used to set up a program. Select the proper program number and press "ENTER".

DIRECTION

The DIRECTION parameter controls whether the set-points are sequenced in one direction or both directions before the sequence is repeated. If the both directions option is selected, the program sequences from the first set-point to the last and then reverses direction sequencing from the last to the first.

RAMP RATE

The RAMP RATE parameter controls the scan rate for the programmed test. Refer to the "Scan Rate" section for more information on the ramp rate.

SOAK MINUTES

The SOAK MINUTES parameter is the number of minutes that each of the program set-points is maintained. The time starts when the temperature settles to within the specified stability. The stability limit is set in the MEAS window.

CYCLES

The CYCLES parameter is the number of times that the program is repeated.

POINTS

The POINTS parameter is the number of set-points defined for a given program. The number of set-points for each program can be set from 1 to 8 and vary depending on the needs of the user. Set the maximum number of set-points needed for the program selected. Once the number of set-points is selected, press "ENTER" to accept the new setting.

PROGRAM

The PROGRAM parameter appears and displays the number of the selected program for which set-points are being setup. Once the number of set-points has been chosen, the set-point setup is active and each set-point can be set up as follows:

- 1. Use the up/down arrows to select the set-point(s) that need to be adjusted.
- 2. Use the numeric keys to enter the desired temperature for each set-point.
- 3. Press "ENTER" to accept the new temperature.
- 4. Repeat steps 1-3 for all other set-points.

5.2.3.3 Run

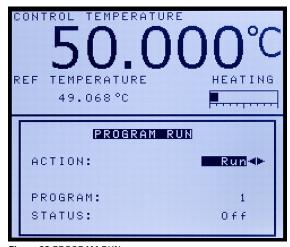


Figure 20 PROGRAM RUN menu

The Run (PROGRAM RUN) menu controls the programmed test. You may choose between three options: start the program from the beginning, continue the program from the point where it was stopped, or stop the program.

ACTION

The ACTION parameter allows a program to be started, continued or stopped.

To start a program, use the right/left arrow keys to select "Run" and press "ENTER". The program runs until finished or until the user changes the program action to "Stop".

To stop a program, use the right or left arrow keys to select "Stop" and press "ENTER". The program stops until the user continues or restarts the program.

To continue a previously stopped program, use the right or left arrow keys to select "Cont" and press "ENTER". The program starts at the same point it was previously stopped.

PROGRAM (view only)

The PROGRAM parameter displays the current program in use.

STATUS (view only)

The STATUS parameter displays the status of the current program in use. If a program is enabled and running, this parameter displays "On", otherwise "Off" is displayed.

5.2.4 System Menu

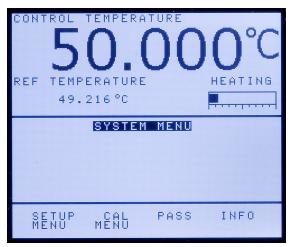


Figure 21 SYSTEM MENU

The controller has a number of configuration and operating options. It also has calibration parameters that are programmable via the front panel. These are accessed from the System Menu. The configuration parameters included are display parameters, security parameters and passwords, probe parameters, operating parameters, serial interface parameters, reference thermometer calibration parameters, Metrology Temperature Block sensor calibration parameters, and controller calibration parameters. The menus are selected using the soft keys (F1-F4) on the front panel when the SYSTEM MENU is active

5.2.4.1 Setup menu

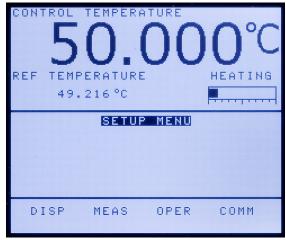


Figure 22 SETUP MENU

The SETUP MENU contains submenus that insure the proper operation of the instrument. System settings should only be adjusted by qualified and trained personnel.

5.2.4.1.1 Disp

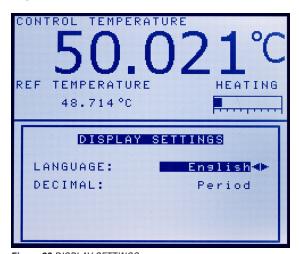


Figure 23 DISPLAY SETTINGS menu

The Disp (DISPLAY SETTINGS) menu allows the user to change the display language and decimal separator.

LANGUAGE

The LANGUAGE parameter is used to set the display language. The instrument supports a limited number of languages. Use the right or left arrow key to select the

preferred language and press "ENTER" to accept the selection. The user needs to exit from the DISP menu window in order for the change in language selection to take affect.

NOTE: If the wrong language is selected, return to the Main Screen by holding EXIT for a few seconds. Once the Main Screen is displayed, simultaneously press and hold F1 and F4 to return to English.

DECIMAL

The DECIMAL parameter is used to determine the decimal separator, a comma or a period. Select the desired decimal separator using the right or left arrow key and press "ENTER" to accept the selection.

5.2.4.1.2 Meas

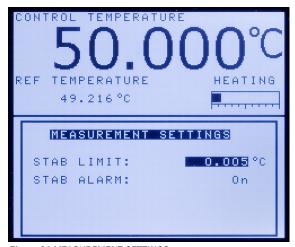


Figure 24 MEASUREMENT SETTINGS menu

The Meas (MEASUREMENT SETTINGS) menu is used to set the stability limit and alarm

STAB LIMIT

NOTE: The Metrology Temperature Block should not be expected to operate better than the stability specification set forth in the Specifications section of this guide. Therefore, the minimum setting of the stability limit should not be less than the stability specification.

The STAB LIMIT parameter allows the instrument to notify the user when it has achieved the stability limit set in this parameter. There are two notifications: visual and audible. The visual notification is always active. When the instrument is operating

within the stability limit, the stability parameter on the main screen remains highlighted once the instrument is within the given specification, otherwise the parameter is not be highlighted. The audible, if enabled, alerts the user once per set-point when the instrument achieves the set stability limit. Use the numeric keys to set the desired stability limit and press "ENTER" to accept the new stability limit.

Example:

A specific calibration process requires the instrument to operate within $\pm 0.1^{\circ}$ C. "0.1" would be entered into the stability limit parameter. When the instrument's stability is within $\pm 0.1^{\circ}$ C, "STAB: X.XXX°C" is be highlighted and the audible alarm (if enabled) notifies the user that the instrument is operating within $\pm 0.1^{\circ}$ C. Use the numeric keys to set the desired stability limit and press "ENTER" to accept the new stability limit.

STAB ALARM

The audible alarm described in STAB LIMIT is turned on or off using the STAB ALARM parameter. Select the either "On" or "Off" using the \triangleleft or \triangleright arrow keys and press "ENTER" to accept the selection.

5.2.4.1.3 Oper

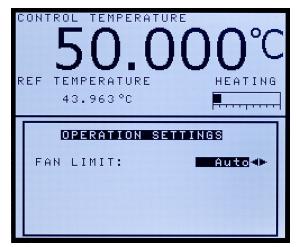


Figure 25 OPERATION SETTINGS menu

The Oper (OPERATION SETTINGS) menu allows the user to set up the limit for the maximum speed of the fan. The FAN LIMIT parameter can be set to Auto, Medium or Low. The Auto setting allows the instrument to operate at maximum efficiency for the chosen set-point. The instrument may be noisier as the fan moves at different speeds through the temperature range improving the performance. At low temperature settings, the fan operates at its fastest speed. At high temperatures, the fan operates at a lower speed.

NOTE: The Low setting is quieter, but decreases scan rate, reduces low temperature performance and may prevent the instrument from fully meeting all specifications. The Medium setting falls in the middle of Auto and Low. The Medium setting does not allow the fan to operate at its fast speed, but does allow it to operate at slower speed when applicable.

5.2.4.1.4 Comm

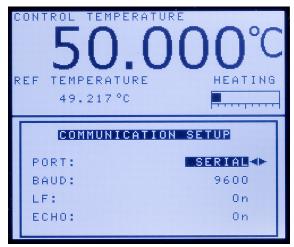


Figure 26 COMMUNICATION SETUP menu

The Comm (COMMUNICATION SETUP) menu contains the serial interface parameters. The parameters in the menu are — PORT, BAUD rate, LF, ECHO, SERIAL PERIOD and PRINT.

PORT

The PORT parameter can be set to "SERIAL" or "ERRORS". The serial port references the serial interface port and its parameters are listed below. The errors port reports errors obtained by the controller to the screen.

BAUD

The BAUD parameter determines the serial communications transmission rate or baud rate.

BAUD may be programmed to 1200, 2400, 4800, 9600, 19200, or 38400 baud.

LF

The LF (Line Feed) parameter enables (On) or disables (Off) transmission of a line feed character (LF, ASCII 10) after transmission of any carriage-return. The "LF"

default setting is on. The line feed parameter can be turned on or off as needed by the user.

ECHO

The ECHO parameter mode may be set to "On" or "Off". With echo "On", any commands received by the thermometer via the serial interface are immediately echoed or transmitted back to the device of origin. With echo "Off", the commands are executed but not echoed. The default setting is "On". The mode may be changed using the left or right arrow keys and pressing "ENTER".

SER PER

The SER PER (Serial Period) parameter is the interval at which data is transmitted by the instrument to a computer through the serial interface. The serial period is the time period, in seconds, between temperature measurements transmitted from the serial interface. For example, if the sample rate is set to 5, the instrument transmits the current temperature measurement approximately every 5 seconds.

PRINT

The PRINT parameter enables or disables printing the control temperature and power through the serial port.

NOTE: If PRINT is set to "Off", samples are not transmitted automatically through the serial interface.

5.2.4.2 Cal Menu

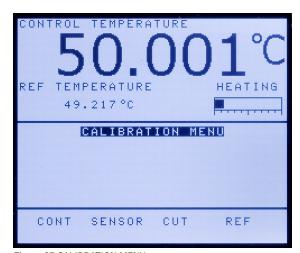


Figure 27 CALIBRATION MENU

CAUTION: Calibration parameters must be correct for the instrument to function properly.

The Cal Menu (CALIBRATION MENU) is used to access controller parameters and the reference thermometer calibration parameters. Access to the controller and reference thermometer calibration parameters is protected by a password. Calibration parameters are programmed at the factory when the instrument is calibrated. These parameters may be adjusted to improve the accuracy of the instrument by qualified personnel.

5.2.4.2.1 Cont

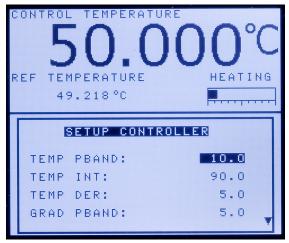


Figure 28 SETUP CONTROLLER menu

CAUTION: DO NOT change the values of the control parameters from the factory set values. The correct setting of these parameters is important to the safe and proper operation of the temperature block.

The parameters in the Cont (SETUP CONTROLLER) menu are set at the factory and must not be altered. The correct values are important to the accuracy and proper and safe operation of the temperature block. Access to these parameters is protected by a password and is available to the user in the event that the controller's memory fails. If this happens, the user may restore these values to the factory settings. These constants and their settings are listed in the Report of Calibration shipped with the instrument.

TEMP PBAND

The TEMP PBAND parameter is the main zone proportional band and the gain in °C that the instrument's proportional-integral-derivative (PID) controller uses for main zone control.

TEMP INT

The TEMP INT parameter is the main zone integral, which is the integration time in seconds that the instrument's PID controller uses for main zone control.

TEMP DER

The TEMP DER parameter is the main zone derivative, which is the derivative time in seconds that the instrument's PID controller uses for main zone control.

GRAD PBAND

The GRAD PBAND parameter is the gain in °C that the instrument's PID controller uses for gradient control.

GRAD INT

The GRAD INT parameter is the integration time in seconds that the instrument's PID controller uses for gradient control.

5.2.4.2.2 Sensor

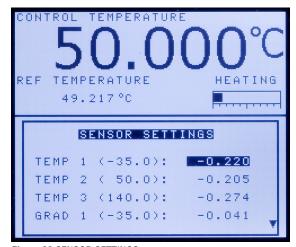


Figure 29 SENSOR SETTINGS menu

The Sensor (SENSOR SETTINGS) menu parameters are set at the factory and must only be altered by qualified personnel. The correct values are important to the accuracy and proper and safe operation of the temperature block. Access to these parameters is protected by a password and is available to the user in the event that the controller's memory fails. If this happens, the user may restore these values to the factory settings. These constants and their settings are listed in the Report of Calibration shipped with the instrument.

TEMP 1

The TEMP 1 parameter is the offset in °C for the display accuracy at the 1st calibration point.

TEMP 2

The TEMP 2 parameter is the offset in °C for the display accuracy at the 2nd calibration point.

TEMP3

The TEMP 3 parameter is the offset in °C for the display accuracy at the 3rd calibration point.

GRAD 1

The GRAD 1 parameter is the offset in °C for the axial gradient at the 1st gradient calibration point.

GRAD 2

The GRAD 2 parameter is the offset in °C for the axial gradient at the 2nd gradient calibration point.

DAY

The DAY parameter is the day on which the instrument was calibrated.

MONTH

The MONTH parameter is the month in which the instrument was calibrated.

YEAR

The YEAR parameter is the year in which the instrument was calibrated.

5.2.4.2.3 Cut

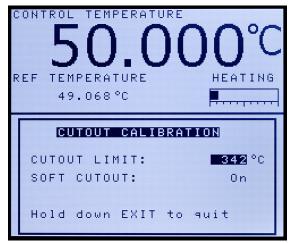


Figure 30 CUTOUT CALIBRATION menu

The Cut (CUTOUT CALIBRATION) menu is for specifying the soft cutout limit and whether or not the soft cutout is "On" or "Off".

CUTOUT LIMIT

The CUTOUT LIMIT parameter is the cutout temperature in °C.

SOFT CUTOUT

The SOFT CUTOUT parameter determines if the Metrology Temperature Block uses the soft cutout or the hard cutout.

5.2.4.2.4 Ref

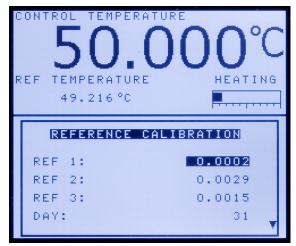


Figure 31 REFERENCE CALIBRATION menu

The Ref (REFERENCE CALIBRATION) menu contains the calibration parameters for the reference thermometer.

REF 1

The REF 1 parameter is the first calibration point for the reference resistance.

REF 2

The REF 2 parameter is the second calibration point for the reference resistance.

REF 3

The REF 3 parameter is the third calibration point for the reference resistance.

DAY

The DAY parameter is the day on which the instrument was calibrated.

MONTH

The MONTH parameter is the month in which the instrument was calibrated.

YEAR

The YEAR parameter is the year in which the instrument was calibrated.

5.2.4.3 Pass

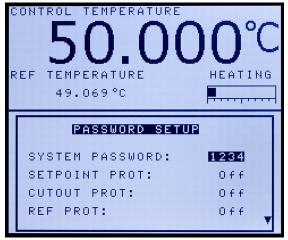


Figure 32 PASSWORD SETUP

The Pass (PASSWORD SETUP) menu is used to set the system password or enable or disable protection of certain groups of system parameters.

If a user enters the wrong password, a message will display on the screen that indicates the wrong password has been entered. The parameter window associated with that password and current menu will still display, but with view capability only. This means that any user can verify proper settings, but only users with the correct password can edit critical parameters.

SYSTEM PASSWORD

The SYSTEM PASSWORD parameter is the password used to access protected menus. The System Password is a number between one and four digits. Each digit of the password can be a number from 0 to 9. The default System Password is "1234". If desired, the System Password can be changed in this menu by using the numeric keys to enter the new password and pressing "ENTER".

SETPOINT PROT

The SETPOINT PROT parameter is used to enable or disable password protection for the set-point.

CUTOUT PROT

The CUTOUT PROT parameter is used to enable or disable password protection for the cutout.

REF PROT

The REF PROT parameter is used to enable or disable password protection for the reference menu.

PROG PROT

The PROG PROT parameter is used to enable or disable password protection for the program menu.

SYSTEM PROT

The SYSTEM PROT parameter is used to enable or disable password protection for the system menu.

5.2.4.4 Info (view only)

Figure 33 SYSTEM INFO menu

The Info (SYSTEM INFO) menu displays manufacturer information regarding the instrument.

MANUF

The MANUF parameter displays the name of the manufacturer.

MODEL

The MODEL parameter displays the model number of the instrument.

SERN

The SERN parameter displays the serial number of the instrument.

VERS

The VERS parameter displays the firmware version used in the instrument.

5.3 Menu Structure

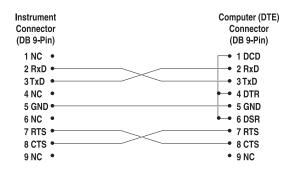
Key/Function	Notes
ENTER Key	
SET POINT	Set the operating set-point
CONT ENABLE	Enable/Disable activate heating/cooling of the instrument
SCAN RATE	Set the desired scan rate
EXIT Key	
CUTOUT	
RESET CUTOUT	Set the soft cutout
Yes, No	
CUTOUT ALARM	
On, Off	
UP ARROW Key	
DECREASE CONTRAST	Display will lighten
DOWN ARROW Key	, ., .
INCREASE CONTRAST	Display will darken
LEFT ARROW Key	
CONTROL TEMPERATURE FOCUS	Only functional if Reference Probe is installed and
RIGHT ARROW Key	Enabled
REFERENCE TEMPERATURE FOCUS	Only functional if Reference Probe is installed and
HEI EHENGE TEMPERATURE TOCOS	Enabled
°C / °F Key	Toggle units between °C and °F
MENU Key	
MAIN MENU	
TEMP MENU (Temperature Menu)	
SET (Control Setpoint)	Main set-point menu
SETPOINT	
CONT ENABLE	Enable/Disable activate heating/cooling of the
	instrument
SCAN RATE	
PRESET (Select Point)	Select a preset set-point
1–8	
SETUP (Presets Setup)	Setup preset set-points
SETPOINT 1-8	
CUTOUT (Cutout Settings)	Set the soft cutout
CUTOUT	
RESET CUTOUT	
Yes, No	
CUTOUT ALARM	
On, Off	
REF MENU (Reference Menu)	Reference probe menu
SELECT	•
PROBE SELECT	
Probe 1, Probe 2	
ENABLE	Enable/Disable Reference Probe feature
On, Off	
OII, OII	

Function		Notes
SETUP (Setup Probe)		Setup reference probe1/2
	SELECT	
	Probe 1, Probe 2	
	YPE	
	ITS-90	ITS-90 coefficients
	SERIAL	
	RTPW	
	COEF A	
	COEF B	
	COEF C	
	COEF A4	
	COEF B4	
	CVD	Callendar Van Dusen coefficients
	SERIAL	Canonical van Bussii cosmolonio
	R0	
	ALPHA	
	DELTA	
	BETA	
	RES	Set unit to display the resistance of the reference pro
	SERIAL	Set unit to display the resistance of the reference pro
TEST (Probe Test)	
'	SELECT	
	Probe 1, Probe 2	
	RESISTANCE	
	EMPERATURE (view or	
1 1	(Focus Select)	ny)
1 1 .	FOCUS SELECT	Select Reference/Control Focus (Control Large/Ref
	0000 022201	small or Control small/Ref large. Enabled only when reference probe option is installed and REF PROBE is ON in the ENABLE menu, otherwise FOCUS is disabled.)
	Control, Reference	,
PROG MENU	(Program Menu)	(Ramp & Soak) allows unit to be ramped up or down automatically to a maximum or 8 different set-points
SELEC	T (Program Select)	, , , , , , , , , , ,
	PROGRAM	
	1–4	
SETUP	(Program Setup)	
1 1 .	PROGRAM	
	1–4	
	DIRECTION	Set unit to go from set-point 1 to 8 or from 8 to 1.
	↑, ↑↓	- ·
F	RAMP RATE	Set the maximum °C/time limit
	SOAK MINUTES	Time to control at the given set-point (minutes)
	CYCLES	Number of times to repeat the given program
	POINTS	Minimum # of set-points is 1 and maximum # of set-points is 8.
	SETPOINT 1 SETPOINT ?	Setup the number of set-points defined in "POINTS"
RI IN /P	rogram Run)	
1 1 1	ACTION	
	1	
	Run, Cont, Stop	

y/Functio	n				Notes
		PROG	iRAM (view only)	
		STATU	JS (vie	w only)	
SYST	EM ME	NU			
	SETUR	P MEN	U		
		DISP	(Displa	y Settings)	
			LANG	UAGE	
				English, French,	
			DECIN	Chinese	
			DECI		
		MEAC	///	Period, Comma	
		IVIEAS		surement Settings)	Set when the unit indicates the desired stability limit
			SIAD	LIMIT (Stability Limit)	has been reached. Only applies when the unit is ramping up or down and stabilizing.
				ALARM (Stability	
			Alarm	<i>*</i>	
			(Oper	On, Off	
		OFEN	FAN L	ation Settings)	
				Auto, Medium, Low	
				munication Setup)	
			PORT		
			1 0111	SERIAL, ERRORS	
			BAUD		
			2, 102	1200, 2400, 4800,	
				9600, 19200, 38400	
			LF		
				On, Off	
			ECHC)	
				On, Off	
			SER F		
				0.5 sec, 1 sec, 2 sec, 5 sec, 10 sec, 15	
				sec, 30 sec, 1 min	
			PRIN		
				On, Off	
	CAL M	IENU (Calibra	ation Menu)	
		CONT	(Setu	o Controller)	Password protected menu
			TEMP	PBAND	
			TEMP		
			TEMP		
				PBAND	
			GRAD		
		SENS		ensor Settings)	Password protected menu
				1 (XXX.X)	
				2 (XXX.X)	
				3 (XXX.X)	
) 1 (XXX.X)	
		CUT (2 (XXX.X)	Pageward protected many
		CUI (Calibration)	Password protected menu
				OUT LIMIT	
			5UF I	CUTOUT	
		l		On, Off	

Key/Function		Notes
	REF (Reference Calibration)	Password protected menu
	REF 1	
	REF 2	
	REF 3	
	DAY	
	MONTH	
	YEAR	
PASS	(Password Setup)	Password protected menu. Setup of password protection for system parameters and menus
	SYSTEM PASSWORD	
	SETPOINT PROT (Set-point Protect)	
	On, Off	
	CUTOUT PROT (Cutout Protect)	
	On, Off	
	REF PROT (Reference Protect)	
	On, Off	
	PROG PROT (Program Protect)	
	On, Off	
	SYSTEM PROT (System Protect)	
	On, Off	
INFO	(System Info, view only)	
	MANUF (Manufacturer)	
	MODEL	
	SERN (Serial Number)	
	VERS (Firmware Version)	

6 Digital communication interface


The Metrology Temperature Block is capable of communicating with and being controlled by other equipment through the RS-232 digital interface.

With a digital interface the instrument may be connected to a computer or other equipment. This allows the user to input the set-point temperature, monitor the temperature, and access any of the other controller functions, all using remote communications equipment. The RS-232 serial interface allows serial digital communications over fairly long distances. With the serial interface, the user may access any of the functions, parameters and settings discussed in this section.

6.1 Wiring

The serial communications cable attaches to the instrument through the DB-9 connector at the back of the instrument. Figure 34, on this page shows the pin-out of this connector and suggested cable wiring. To eliminate noise, the serial cable should be shielded with low resistance between the connector (DB9) and the shield.

RS-232 Cable Wiring for IBM PC and Compatibles

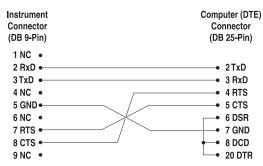


Figure 34 RS-232 Wiring

6.1.1 Setup

Before operation the serial interface must first be set up by programming the BAUD rate and other configuration parameters. These parameters are programmed within the communications menu. The serial interface parameters can be accessed from the main menu by MENU|SYSTEM MENU|SETUP MENU|COMM. Refer to "Comm" in the Controller Operation section for more information on the serial interface parameters.

6.1.2 Serial Operation

Once the cable has been attached and the interface set up properly, the controller immediately begins transmitting temperature readings at the programmed rate. The serial communications uses 8 data bits, one stop bit, and no parity. The set-point and other commands may be sent via the serial interface to set the temperature set-point and view or program the various parameters. The interface commands are discussed in the "Digital Interface" section.

6.2 Command Syntax

Metrology Temperature Blocks accept commands for setting parameters, executing functions or responding with requested data. These commands are in the form of strings of ASCII-encoded characters. As far as possible, the Metrology Temperature Block command syntax conforms to SCPI-1994. One notable exception is that compound commands are not allowed as explained below.

Commands consist of a command header and, if necessary, parameter data. All commands must be terminated with either a carriage return (ASCII 0D hex or 13 decimal) or new line character (ASCII 0A hex or 10 decimal).

Command headers consist of one or more mnemonics separated by colons (:). Mnemonics may use letter characters, the underscore character (_), and possibly numeric digits as well. Commands are not case sensitive. Mnemonics often have alternate forms. Most mnemonics have a long form that is more readable and a short form consisting of three or four characters that is more efficient.

A mnemonic may end with a numeric suffix that specifies one of a set of independent function blocks such as input channel data paths. If a numeric suffix is omitted when a particular block must be specified, an error is generated ("Header suffix out of range").

Query commands are commands that request data in response. Query commands have a question mark (?) immediately following the command header. Responses to query commands are generated immediately and placed in the output buffer. Responses are then transmitted automatically over the RS-232 port. Responses are lost if not read before the next command is received.

Some commands require parameter data to specify values for one or more parameters. The command header is separated from the parameter data by a space (ASCII 20 hex or 32 decimal). Multiple parameters are separated by a comma(,).

Metrology Temperature Blocks do not allow compound commands (multiple commands per line separated with semicolons). All commands are sequential. The execution of each command is completed before subsequent commands are processed.

6.3 Commands by Function or Group

In this section, the commands are arranged into the following groups:

Calibration Commands – commands for Metrology Temperature Block calibration parameters.

Main Screen Commands – commands for parameters displayed on the main screen.

Program Commands – commands for program setup and status.

Reference Commands – commands for accessing reference thermometer parameters.

Setup Commands – commands for setting up communication, display, measure, and operation parameters.

System Commands – commands to report and change the status of the instrument.

Temperature Commands – commands for control temperature and cutout functions.

Table 6 Commands by function or group

	Screen Parameter	Command	Password Protection Group	Read/Write
Calibration - Controller	TEMP PBAND	SOUR[1]:LCON:PBAN	unconditional	R/W
Campianon Controller	TEMP INT	SOUR[1]:LCON:INT	unconditional	R/W
	TEMP DER	SOUR[1]:LCON:DER	unconditional	R/W
	GRAD PBAND	SOUR2:LCON:PBAN	unconditional	R/W
	GRAD INT	SOUR2:LCON:INT	unconditional	R/W
	GRAD RATIO	OUTP:SLAV:RAT	unconditional	R/W
Calibration - Cutout	CUTOUT LIMIT	SOUR[1]:PROT MAX	N/A	R
	SOFT CUTOUT	SOUR[1]:PROT:SOFT	unconditional	R/W
Calibration - Reference	REF 1	SENS:CAL:PAR1	unconditional	R/W
	REF 2	SENS:CAL:PAR2	unconditional	R/W
	REF 3	SENS:CAL:PAR3	unconditional	R/W
	DAY	CAL:DATE:CAL	unconditional	R/W
	MONTH	CAL:DATE:CAL	unconditional	R/W
	YEAR	CAL:DATE:CAL	unconditional	R/W
Calibration - Sensor	TEMP 1	SOUR[1]:SENS:CAL:PAR1	unconditional	R/W
	TEMP 2	SOUR[1]:SENS:CAL:PAR2	unconditional	R/W
	TEMP 3	SOUR[1]:SENS:CAL:PAR3	unconditional	R/W
	GRAD 1	SOUR2:SENS:CAL:PAR1	unconditional	R/W
	GRAD 2	SOUR2:SENS:CAL:PAR2	unconditional	R/W
Main Screen - Left	SETP	(see Temperature-Setup below)	N/A	R
	CUT	(see Temperature-Cutout below)	N/A	R
	HEAT	OUTP[1]:DAT	N/A	R
	STAB	SOUR[1]:STAB:DAT	N/A	R
	STAB highlight	SOUR[1]:STAB:TEST	N/A	R
	RATE	SOUR[1]:RATE	N/A	R
Main Screen - Right	RUN	(see PROGRAM ACTION below)	N/A	R
	STEP	PROG:NUMB PPO	N/A	R
	SOAK	PROG:NUMB PSO	N/A	R
Main Screen - Upper	C/F view	UNIT:TEMP	none	R/W

	Screen		Password Protection	
	Parameter	Command	Group	Read/Write
	CONTROL TEMP.	SOUR[1]:SENS:DAT [TEMP]	N/A	R
	REF TEMP.	READ, MEAS, FETC	N/A	R
	CUT-OUT	SOUR[1]:PROT:TRIP	N/A	R
Program - Run	PROGRAM ACTION	PROG:STAT	4	R/W
Program - Select	SELECT TEST	PROG:NAME	4	R/W
Program - Setup	SELECT TEST	PROG:NAME	4	R/W
	DIRECTION	PROG:NUMB DIR	4	R/W
	RAMP RATE	PROG:NUMB RAMP	4	R/W
	SOAK TIME	PROG:NUMB SOAK	4	R/W
	CYCLES	PROG:NUMB CYCL	4	R/W
	POINTS	PROG:NUMB POIN	4	R/W
	SETPOINT 1	PROG:NUMB SPO1	4	R/W
	SETPOINT 2	PROG:NUMB SPO2	4	R/W
	SETPOINT 3	PROG:NUMB SPO3	4	R/W
	SETPOINT 4	PROG:NUMB SPO4	4	R/W
	SETPOINT 5	PROG:NUMB SPO5	4	R/W
	SETPOINT 6	PROG:NUMB SPO6	4	R/W
	SETPOINT 7	PROG:NUMB SPO7	4	R/W
D (SETPOINT 8	PROG:NUMB SPO8	4	R/W
Reference - Select	SELECT	CALC:CONV:SEL SENS:STAT	3	R/W
D (0)	ENABLE		3	R/W
Reference - Setup	TYPE SERIAL	CALC:CONV:NAME CALC:CONV:SNUM	3	R/W R/W
	RTPW			
		CALC:CONV:PAR:VAL RTPW	3	R/W
	COEF A	CALC:CONV:PAR:VAL A	3	R/W
	COEF B	CALC:CONV:PAR:VAL B	3	R/W
	COEF C	CALC:CONV:PAR:VAL C	3	R/W
	COEF A4	CALC:CONV:PAR:VAL A4	3	R/W
	COEF B4	CALC:CONV:PAR:VAL B4	3	R/W
	R0	CALC:CONV:PAR:VAL R0	3	R/W
	ALPHA	CALC:CONV:PAR:VAL AL	3	R/W
	DELTA	CALC:CONV:PAR:VAL DE	3	R/W
	BETA	CALC:CONV:PAR:VAL BE	3	R/W
Reference - Test	RESISTANCE	CALC:CONV:TEST	N/A	R
Setup - Communication	BAUD	SYST:COMM:SER:BAUD	5	R/W
·	LF	SYST:COMM:SER:LIN	5	R/W
	ECHO	SYST:COMM:SER:FDUP	5	R/W
	SER PER	SYST:COMM:SER:TIME	5	R/W
	PRINT	SYST:COMM:SER:FEED	5	R/W
	PORT (ERRORS)	SYST:ERR	N/A	R
Setup - Display	DECIMAL	SYST:DEC:FORM	5	R/W
	LANGUAGE	DISP:LANG	5	R/W
Setup - Measure	STAB LIMIT	SOUR[1]:STAB:LIM	5	R/W
·	STAB ALARM	SOUR[1]:STAB:BEEP	5	R/W
Setup - Operation	FAN MODE	SYST:FAN	5	R/W
System - Information	(all)	*IDN	N/A	R

	Screen Parameter	Command	Password Protection Group	Read/Write
	(none)	*CLS	none	W
	(none)	*OPT	N/A	R
	(none)	*STB	N/A	R
	(none)	OUTP2:DAT	N/A	R
	(none)	PROG:NUMB PCYC	N/A	R
	(none)	PROG:NUMB PDIR	N/A	R
	(none)	SENS:DAT	N/A	R
	(none)	SYST:BEEP:IMM	N/A	W
	(none)	SYST:PASS:CDIS	unconditional	W
	(pass prompt)	SYST:PASS:CEN	unconditional	W
	(none)	SYST:PASS:CEN:STAT	N/A	R
System - Password	PASSWORD	SYST:PASS:NEW	unconditional	W
	SETPOINT PROT	SYST:PASS:GROU1	unconditional	R/W
	CUTOUT PROT	SYST:PASS:GROU2	unconditional	R/W
	REF PROT	SYST:PASS:GROU3	unconditional	R/W
	PROG PROT	SYST:PASS:GROU4	unconditional	R/W
	SYSTEM PROT	SYST:PASS:GROU5	unconditional	R/W
Temperature – Cutout	CUTOUT	SOUR[1]:PROT	2	R/W
	RESET CUTOUT	SOUR[1]:PROT:CLE	none	W
	CUTOUT ALARM	SOUR[1]:PROT:HIGH:BEEP	2	R/W
Temperature - Setup	SETPOINT 1	SOUR[1]:LIST:SPO1	1	R/W
	SETPOINT 2	SOUR[1]:LIST:SPO2	1	R/W
	SETPOINT 3	SOUR[1]:LIST:SPO3	1	R/W
	SETPOINT 4	SOUR[1]:LIST:SPO4	1	R/W
	SETPOINT 5	SOUR[1]:LIST:SPO5	1	R/W
	SETPOINT 6	SOUR[1]:LIST:SPO6	1	R/W
	SETPOINT 7	SOUR[1]:LIST:SPO7	1	R/W
	SETPOINT 8	SOUR[1]:LIST:SPO8	1	R/W
	SETPOINT	SOUR[1]:SPO	1	R/W
	CONT ENABLE	OUTP:STAT	1	R/W
	SCAN RATE	SOUR[1]:SLEW	1	R/W

6.4 Serial Commands - Alphabetic Listing

Each command description provides the structure (long and short format), a description of the command purpose, a command example, an example of what the command returns (as applicable to query commands), and notes specific to the command. The following apply to each group of commands:

• Numeric data, specified by the mnemonic, <num>, uses ASCII characters to represent numbers. Numbers may contain a plus or minus ('+' or '-') sign, decimal point ('.'), and exponent ('E' or 'e') with its sign. If a fractional component is received when only an integer is required, the number is rounded to the nearest integer without any resulting error message. The mnemonics DEF, MIN, and MAX are often acceptable for the default, minimum, and maximum

- value respectively. Unit suffixes, such as V or OHM, can be appended to numeric parameters and are accepted without error but ignored.
- Unrecognized commands or commands with incorrect syntax or invalid parameters generate error messages in the error queue.
- Upper case letters designate syntax that is required when issuing the command.
 Lower case letters are optional and may be omitted.
- indicates a required parameter.
- [] indicates optional parameters.
- () indicates a group of parameters that must be used together.
- For query commands, specifying the MIN, MAX, or DEF parameter causes the instrument to respond with the minimum, maximum, or default setting respectively.
- For set commands, specifying the MIN, MAX, or DEF parameters causes the instrument to use the minimum, maximum, or default setting respectively.
- '|' indicates alternate parameter values.
- <n> indicates a number is required.
- <num> indicates numeric value is required.
- indicates a program number (SEQ<n> or SWIT<n>) is required.
- <bool> indicates a Boolean value (0 or 1) is required. The mnemonics OFF and ON are also accepted for 0 and 1, respectively.
- <conv> indicates a conversion mnemonic is required.
- param> indicates a parameter name is required.
- <seri> indicates a serial number is required.
- <res> indicates a resistance value is required.
- <volt> indicates a voltage value is required.
- <unit> indicates a temperature unit is required.
- <temp> indicates a temperature °C/F is required.
- <pass> indicates a password is required.
- <port> indicates a port number is required.
- <label> indicates an eight character label is required.
- <year> indicates a four digit number is required.
- <month> indicates a one or two digit number is required.
- <day> indicates a one or two digit number is required.
- <nour> indicates a one or two digit number is required.
- <minute> indicates a one or two digit number is required.
- <second> indicates a one or two digit number is required.
- <baud> indicates a valid baud number is required.

*CLS

Clear the status registers

Example: *CLS

This command has no response.

Clears all status registers(events, operations etc).

*IDN?

Read the product information (Manufacturer, Model Number, Serial Number, and Firmware Version)

Example: *IDN?

Response: Beamex, MB140, 0, 1.00

*OPT?

Read the product configuration, reference hardware enabled (1) or not (0) (see SYST:CONF:REF)

Example: *OPT?

Response: 1

This command is a read only command and returns the state of the reference functionality (0, 1).

CAL:DAT:CAL[?] [<year>,<month>,<day>]

NOTE: This command is unconditionally protected, which requires a password to set it.

Read or set the calibration date

Read Example: CAL:DAT:CAL?

Response: 2005,1,1

Set Example: CAL:DAT:CAL 2006,12, 30

This command reads or sets the calibration date for the unit.

CALC:CONV:NAME[?] [CVD|ITS]

NOTE: Depending on group password setting, this command is conditionally protected.

Read or set the reference probe type

Read Example: CALC:CONV:NAME?

Response: CVD

Serial Commands - Alphabetic Listing

Set Example: CALC:CONV:NAME I90

This command is password protected via group 3(Reference Protection).

CALC:CONV:PAR:CAT?

Read the list of reference probe characterization parameter names

Example: CALC:CONV:PAR:CAT?

Response: "RTPW", "A", "B", "C", "A4", "B4"

This command is a read only command, which returns the available parameters for the current probe type.

CALC:CONV:PAR:VAL[?] par[,<n>]

NOTE: Depending on group password setting, this command is conditionally protected.

Read or set a reference probe characterization parameter (A, A4, AL (Alpha), B, B4, BE (Beta), C, DE (Delta), RTPW)

Read Example: CALC:CONV:PAR:VAL? RTPW

Response: 100.000

Set Example: CALC:CONV:PAR:VAL A, 0.00385

This command is password protected via group 3 (Reference Protection).

This command returns an ITS-90 reference probe characterization parameter as desired by the user.

CALC:CONV:SEL[?] [n]

Read or set the reference probe characterization parameter set.

Read Example: CALC:CONV:SEL?

Response: 1

Set Example: CALC:CONV:SEL 1

Parameters for two probes can be stored in the instrument. This command selects the probe number.

CALC:CONV:SNUM[?] [n]

Read or set reference probe serial number.

Read Example: CALC:CONV:SNUM?

Response: 1234

Set Example: CALC:CONV:SNUM 1560D

This command allows the user to enter a reference probe serial number.

CALC:CONV:TEST[?] [n]

Test the reference probe resistance to temperature calculation

Read Example: CALC:CONV:TEST? 100.000

Response: 0.0100

This is a read only command and tests the external probe resistance.

DISP:LANG[?] [n]

Read or set the display language.

Read Example: DISP:LANG?

Response: 0

Set Example: DISP:LANG 1

This command is used to read or set the Display Language. A value of 0, 1, or 2 sets the Display Language to English, French, or Chinese respectively.

OUTP:SLAV:RAT[?] [n]

NOTE: This command is unconditionally protected, which requires a password to set it.

Read or set the slave heater ratio

Read Example: OUTP:SLAVE:RAT?

Response: 1.0

Set Example: OUTP:SLAVE:RAT 2.0

The heater ratio is the ratio in percentage of full power between the main heaters and the bottom heaters in the hot units. For more information regarding this parameter, refer to the Controller Operation section.

OUTP[:STAT][?] [0|1]

NOTE: Depending on group password setting, this command is conditionally protected.

Read or set the heat output enable, off (0) or on (1)

Read Example: OUTP:STAT?

Serial Commands - Alphabetic Listing

Response: 0

Set Example: OUTP:STAT 1

This command is password protected via group 1(Set Point protection).

This command reads the active heating or cooling output status. A "0" is returned if the output status is off, and a "1" is returned if the output status is on.

OUTP[1]:DAT?

Read the main heat output percent

Example: OUTP[1]:DAT?

Response: 18.0

This command returns the current main zone heater duty cycle.

OUTP2:DAT?

Read the gradient heat output percent

Example: OUTP2:DAT?

Response: 12.0

This command returns the current gradient zone heater duty cycle.

PROG:NAME? [<prog>]

NOTE: Depending on group password setting, this command is conditionally protected.

Read or select a program name (SEQ1, SEQ2, SEQ3, SEQ4)

Read Example: PROG:NAME?

Response: SEQ1

Set Example: PROG:NAME SEQ1

This command is password protected via group 4(program protection).

Issuing program parameter SEQ1 – SEQ4 sets the sequence program

PROG:NUMB[?] par[,<n>]

NOTE: Depending on group password setting, this command is conditionally protected.

Read or set a program parameter (SEQ<n>: SPO<n>, RAMP, DIR, POIN, CYCL, SOAK, PPO, PSO, PCYC, PDIR)

Read Example: PROG:NUMB? SPO1

Response: 65

This command is password protected via group 4 (program protection).

In the above, example the sequence program set-point 1 is returned. If PROG:NUMB PPO? is entered, the return value is the current set-point number of the sequence program. PSO refers to the amount of time the program soaks at the given set point when stable. PCYC refers to the number of cycles the program runs. PDIR refers to the direction the program takes. A PDIR response of 0 refers to a forward path only. A response of 1 refers to a forward path and a return path. The following suffixes are read only PPO, PSO, PCYC, PDIR. The other suffixes are read and write.

PROG:STAT[?] [RUN|STOP|CONT]

NOTE: Depending on group password setting, this command is conditionally protected.

Read or set the selected program execution state

Read Example: PROG:STAT?

Response: 0

Set Example: PROG:STAT STOP

This command is password protected via group 4 (program protection).

If a Sequence program is not running then a value of 0 is returned otherwise a 1 is returned

READ?, MEAS? or FETC?

Read the reference thermometer input temperature, C or F.

Example: READ? Response: 264.262

If the external reference probe is enabled, the reference temperature is returned otherwise 0.0 is returned.

SENS:CAL:PAR[n][?] [n]

NOTE: This command is unconditionally protected, which requires a password to set it.

Read or set a reference input calibration parameter (:PAR1, :PAR2, :PAR3)

Read Example: SENS:CAL:PAR1?

Response: 0.2

Set Example: SENS:CAL:PAR2 0.092

Reference thermometer input commands to verify or set TEMP 1 (PAR1), TEMP 2 (PAR2), or TEMP 3 (PAR3) calibration parameters.

SENS:DAT?

Read the reference input resistance

Example: SENS:DAT? Response: 199.9366

This command returns the resistance in ohms of the reference probe.

SENS:STAT?

Read or set the reference probe enable state off (0) or on (1).

Read Example: SENS:STAT?

Response: 1

Set Example: SENS:STAT 1

The Reference Thermometer function of the instrument can be enabled or disabled through this command.

SOUR[1]:LCON:DER[?] [n]

NOTE: This command is unconditionally protected, which requires a password to set it.

Read or set the main control loop derivative time, seconds

Read Example: SOUR1:LCON:DER?

Response: 1.5

Set Example: SOUR1:LCON:DER 5

The main zone derivative is the derivative time in seconds that the unit's PID controller used for main zone control.

SOUR[1]:LCON:INT[?] [n]

NOTE: This command is unconditionally protected, which requires a password to set it.

Read or set the main control loop integral time, seconds

Read Example: SOUR1:LCON:INT?

Response: 20.0

Set Example: SOUR1:LCON:INT 10

The main zone integral is the integration time in seconds that the unit's PID controller uses for main zone control.

SOUR[1]:LCON:PBAN[?] [n]

NOTE: This command is unconditionally protected and requires a password to set it.

Read or set the main control loop proportional band, °C

Read Example: SOUR1:LCON:PBAN?

Response: 1.5

Set Example: SOUR1:LCON:PBAN 7

The main zone proportional band is the gain in °C that the unit's proportional-integral-derivative (PID) controller uses for main zone control.

SOUR[1]:LIST:SPO[i][?] [n]

NOTE: Depending on group password setting, this command is conditionally protected.

Read or set a main temperature preset set-point

Read Example: SOUR1:LIST:SPO6?

Response: 25.00

Set Example: SOUR1:LIST:SPO6 100.00

This command is password protected via group 1(Set Point protection).

This sets the preset set-points found in Temp Menu under Setup.

SOUR[1]:PROT[?] [n]

NOTE: Depending on group password setting, this command is conditionally protected.

This command is password protected via group 2(Cutout Protection).

Read or set the temperature cutout set-point in C or F

Read Example: SOUR:PROT?

Response: 140

Set Example: SOUR:PROT 140.00

Returns the current value of the cutout set-point.

SOUR[1]:PROT? MAX

Read or set the temperature cutout limit Read Example: SOUR:PROT? MAX

Response: 200

Set Example: SOUR:PROT 200

Returns the maximum calibrated cutout temperature.

SOUR[1]:PROT:CLE

Reset the temperature cutout Example: SOUR:PROT:CLE

This command has no response.

If the Metrology Temperature Block exceeds the temperature set in the soft cutout menu (or when using the command SOUR:PROT) or if it exceeds the maximum operating temperature of the instrument, a cutout condition occurs. If this happens, the unit enters cutout mode and will not actively heat or cool until the user issues this command to clear the cutout.

SOUR[1]:PROT:HIGH:BEEP[?] [n]

Reads or sets the cutout alarm.

Read Example: SOUR:PROT:HIGH:BEEP?

Response: 0

Set Example: SOUR:PROT:HIGH:BEEP 1

This command enables or disables the Cutout Alarm. 0 disables the Alarm and 1 enables the Alarm.

SOUR[1]:PROT:SOFT[?] [0|1]

Read or set the soft cut-out enable, off (0) or on (1)

Read Example: SOUR:PROT:SOFT?

Response: 1

Set Example: SOUR:PROT:SOFT 0

If this command is issued, as in the above set example, the hard cutout limit is used, otherwise the soft cutout is used

SOUR[1]:PROT:TRIP?

Read the temperature cutout tripped state

Example: SOUR:PROT:TRIP?

Response: 0

A value of 0 is returned if the cutout set point has not been reached. Otherwise a value of 1 is returned and the cutout set point has been reached.

SOUR[1]:RATE?

Read the control temperature rate of change, °C or °F per minute

Example: SOUR:RATE?

Response: 0.531

The response to this command starts out high initially and decreases as the set point is reached.

SOUR:SENS:CAL:PAR[n][?] [n]

NOTE: This command is unconditionally protected and requires a password to set it.

Read or set a control temperature calibration parameter (:PAR1, :PAR2, :PAR3)

Read Example: SOUR:SENS:CAL:PAR1?

Response: 0.0

Set Example: SOUR:SENS:CAL:PAR2 0.02

This command reads or sets the calibration parameters for main control.

SOUR[1]:SENS:DAT? [TEMP]

Read the control temperature, °C or °F

Example: SOUR:SENS:DAT?

Response: 30.285°C (current control temp)

The current control temperature is returned if the above example is used or if TEMP is appended to the end of the example.

SOUR[1]:SENS:DAT? [RES]

Read the control sensor resistance Example: SOUR:SENS:DAT? RES

Response: 111.28

When RES is appended to the end of the example above, the internal sensor resistance is returned.

SOUR[1]:SLEW[?] [n]

NOTE: Depending on group password setting, this command is conditionally protected.

Read or set the control set-point slew rate, °C/F per minute

Read Example: SOUR:SLEW?

Response: 500

Set Example: SOUR:SLEW 100

This command is password protected via group 1(Set Point protection).

This command sets the controller ramp rate (°C/F per min).

SOUR[1]:SPO[?] [n]

NOTE: Depending on group password setting, this command is conditionally protected.

Read or set the control set-point, °C or °F

Read Example: SOUR:SPO?

Response: 50.000

Set Example: SOUR:SPO 100.00

This command is password protected via group 1(Set Point protection).

This command returns the value of the control set point based on the system temperature unit.

SOUR[1]:STAB:BEEP[?] [0|1]

NOTE: Depending on group password setting, this command is conditionally protected.

Read or set the stability alert enable

Read Example: SOUR:STAB:BEEP?

Response: 1

Set Example: SOUR:STAB:BEEP 0

Enable or disable the audible stability alert.

SOUR[1]:STAB:DAT?

Read the control temperature stability, °C or °F

Example: SOUR:STAB:DAT?

Response: 0.306

The controller stability is returned.

SOUR[1]:STAB:LIM[?] [n]

NOTE: Depending on group password setting, this command is conditionally protected.

Read or set the control temperature stability limit, °C or °F

Read Example: SOUR:STAB:LIM?

Response: 0.005

Set Example: SOUR:STAB:LIM .005

This command is password protected via group 5(System protection).

SOUR[1]:STAB:TEST?

Read the temperature stability status

Example: SOUR:STAB:TEST?

Response: 0

A value of 0 is returned if the controller is not stable at the current set point.

Otherwise a value of 1 is returned if the controller is stable at the current set point.

SOUR2:LCON:INT[?] [n]

NOTE: This command is unconditionally protected and requires a password to set it.

Read or set the gradient temperature control loop integral time, seconds

Read Example: SOUR2:LCON:INT?

Response: 40.0

Set Example: SOUR2:LCON:INT 20

The gradient integral is the integration time in seconds that the unit's PID controller

uses for gradient control.

SOUR2:LCON:PBAN[?] [n]

NOTE: This command is unconditionally protected and requires a password to set it.

Read or set the gradient temperature control loop proportional band, °C

Read Example: SOUR2:LCON:PBAN?

Response: 5.0

Set Example: SOUR2:LCON:PBAN 10

The gradient proportional band is the gain in °C that the unit's PID controller uses for gradient control.

SOUR2:SENS:CAL:PAR[n][?] [n]

NOTE: This command is unconditionally protected, which requires a password to set it.

Read or set a gradient temperature calibration parameter (:PAR1, :PAR2)

Read Example: SOUR2:SENS:CAL:PAR1?

Response: 0.0

Set Example: SOUR2:SENS:CAL:PAR1 5.0

Parameter 1 is the offset in °C for the axial gradient at the 1st gradient calibration point (GRAD 1).

Parameter 2 is the offset in °C for the axial gradient at the 2nd gradient calibration point (GRAD 2)

SYST:BEEP:IMM

Beep the system beeper

Example: SYST:BEEP:IMM

The system beeper should make an audible sound in response to this command.

SYST:COMM:SER:BAUD[?] [<baud>]

Read or set serial interface baud rate

Read Example: SYST:COMM:SER:BAUD?

Response: 2400

Set Example: SYST:COMM:SER:BAUD 9600

SYST:COMM:SER:FDUP[?] [0|1]

Read or set serial interface echo enable, on (1) or off (0)

Read Example: SYST:COMM:SER:FDUP?

Response: 0

Set Example: SYST:COMM:SER:FDUP 1
This command enables or disables echo.

SYST:COMM:SER:FEED[?] [0|1]

Read or set serial interface auto-printing enable, on (1) or off (0)

Read Example: SYST:COMM:SER:FEED?

Response: 1

Set Example: SYST:COMM:SER:FEED 0

This command enables or disables auto printing to the serial port.

SYST:COMM:SER:LIN[?] [0|1]

Read or set serial interface linefeed enable, on (1) or off (0)

Read Example: SYST:COMM:SER:LIN?

Response: 0

Set Example: SYST:COMM:SER:LIN 1

This command enables or disables line feed.

SYST:COMM:SER:TIM[?] [n]

Read or set serial interface auto-printing interval

Read Example: SYST:COMM:SER:TIM?

Response: 3

Set Example: SYST:COMM:SER:TIM 5

This command sets the interval to print to the serial port.

SYST:DEC:FORM[?] [0|1]

Read or set the decimal format (period (0), comma (1))

Read Example: SYST:DEC:FORM?

Response: 0

Set Example: SYST:DEC:FORM 1

A response of 0 implies that a period will be used for a decimal. Otherwise, a comma will be used as the decimal.

SYST:ERR?

Read the errors from the error queue

Example: SYST:ERR?

Response: command protected

This command response reports the errors in the error queue.

SYST:FAN? [n]

Read or set the system fan mode.

Example: SYST:FAN?

Response: 2

Set Example: SYST:FAN 1

The system fan has three operating modes: Auto (2), Medium (1), low (0).

SYST:PASS:CDIS

Disable access to password protected setting commands

Example: SYST:PASS:CDIS

This command has no response.

This command disables the system password protection.

SYST:PASS:CEN [n]

Enable access to password protected setting commands

Example: SYST:PASS:CEN 1234

This command has no response.

This command enables the system password. This password needs to be enabled in order to use the group conditionally protected commands. When the power of the instrument is cycled, system password protection is disabled.

SYST:PASS:CEN:STAT?

Read the access state of password protected setting commands

Example: SYST:PASS:CEN:STAT?

Response: 0

This command reports the current status of the system password.

SYST:PASS:GROU[n][?] [0|1]

NOTE: This command is unconditionally protected, which requires a password to set it.

Read or set a command group protection (off (0), on (1), n=1, 2, 3, 4 or (5))

Read Example: SYST:PASS:GROU1?

Response: 0

Set Example: SYST:PASS:GROU2 1

This command enables and disables group protection passwords.

Group 1: Set point protection

Group 2: Cutout protection

Group 3: Reference Protection

Group 4: Program Protection

Group 5: System Protection

SYST:PASS:NEW <n>|DEF

NOTE: This command is unconditionally protected, which requires a password to set it.

Set the password

Example: SYST:PASS:NEW 1234

This command has no response.

This command allows the user to set the system password.

UNIT:TEMP[?] [C|F]

Read or set the temperature unit

Read Example: UNIT:TEMP?

Response: C

Set Example: UNIT:TEMP F

Depending on unit setting, a C or F is returned with the above read example.

6.5 Non-SCPI Process Commands

This section contains Non-SCPI commands. These are available for users that require Non-SCPI commands for their application. These commands are used differently from the SCPI commands discussed in the previous section, the command protocol and response is different. These commands do not require a question mark (?) for a query, and respond to a query by first outputting the command and colon before the

data. These commands are not password protected. The associated SCPI command is referenced where appropriate.

6.6 Non-SCPI Command by Function or Group

	SCREEN PARAMETER	COMMAND	PASSWORD PROTECTION	READ/WRITE
Setup - Communication	DUPLEX	du	None	R/W
	LINEFEED	If	None	R/W
	SAMPLE RATE	sa	None	R/W
Temperature Settings	HIGH LIMIT	hl	None	R
	SET POINT	s	None	R/W
	TEMPERATURE	t	None	R
System Information	VERSION	*ver	None	R
System Setup	°C/°F	u	None	R/W

*ver

Read the Model number and Main code version (Model Number, Firmware version). A question mark (?) is not required to query this command.

Example: *ver ver. MB155, 1.00

du

Read or set serial interface echo enable, on (1) or off (0).

"On" is Full Duplex and "Off" is Half duplex. The response will be the command string followed by Full or Half. Refer to SYST:COMM:SER:FDUP

Read Example: du

du: HALF

Set Example: du 1

This command enables or disables the echo.

hl

Read the maximum temperature setting for the unit. This command is query only and responds with the command string and a Colon followed by the maximum temperature and associated units.

Read Example: hl

hl: 660.00 C

lf [n]

Read or set the serial interface linefeed enable, where "n" is a value 1 or 0. [0] = LF OFF, [1] = LF ON. The default setting is Off. (Off and on may be used in place of 0 and 1 respectively). If "n" is left blank, the command will be treated as a query. This query responds with the command string and a Colon followed by the LF setting. Refer to SYST:COMM:SER:LIN

Read Example: If

If: OFF

Set Example: If on

s [n]

Read or Set the temperature control set-point in °C or °F (based on current system units). Where "n" is a real value with acceptance limits based on the model. If "n" is left blank, the command will be treated as a query. This query responds with the command string "set:" followed by the temperature setting and associated units. Refer to SOUR[1]:SPO command

Read Example: s set: 100.00 C

Set Example: s 250

sa [n]

Read or Set the serial interface auto printing interval. Where "n" is an integer value from 0-60. If "n" is 0, the auto print will be disabled. Values range from 1 to 60 and are in seconds. If "n" is left blank, the command will be treated as a query. This query responds with the command string "sa" and a Colon followed by the interval setting. Refer to SYST:COMM:SER:TIME command

Read Example: sa

sa: 5

Set Example: s 10

f

Read the control temperature in $^{\circ}$ C or $^{\circ}$ F (based on current system units). This command is query only and responds with the command string and a Colon followed by the temperature and associated units. Refer to SOUR[1]:SENS:DAT command

Read Example: t

t: 99.988 C

MBXXX Series Metrology Temperature Block

Non-SCPI Command by Function or Group

u[n]

Read or Set the display temperature units, where "n" is a character "C" of "F". Default: C If "n" is left blank, the command will be treated as a query. This query responds with the command string "u" and a Colon followed by the unit setting. Refer to UNIT:TEMP command

Read Example: u

u: C

Set Example: u F

7 Maintenance

The Metrology Temperature Block has been designed with the utmost care. Ease of operation and simplicity of maintenance have been a central theme in the product development. With proper care, the instrument should require very little maintenance. Avoid operating the instrument in an oily, wet, dirty, or dusty environment. Operating the instrument in a draft-free environment facilitates improved performance of the instrument.

- If the outside of the instrument becomes soiled, it may be wiped clean with a damp cloth and mild detergent. Do not use harsh chemicals on the surface which may damage the paint or plastic.
- It is important to keep the block of the temperature block clean and clear of any foreign matter. DO NOT use fluid to clean out the block.
- The instrument should be handled with care. Avoid knocking or dropping the temperature block.
- The removable inserts can become covered with dust and carbon material. If the buildup becomes too thick, it could cause the inserts to become jammed in the block. Avoid this build up by periodically buffing the inserts clean.
- If a insert should be dropped, examine the insert for deformities before inserting it in the block. If there is any chance of jamming the insert in the block, file or grind off the protuberance.
- **DO NOT** allow the probe stems to drop into the block or harshly impact the block bottom. This type of action can cause a shock to the sensor.
- If a hazardous material is spilled on or inside the instrument, the user is
 responsible for taking the appropriate decontamination steps as outlined by the
 national safety council with respect to the material.
- If the mains supply cord becomes damaged, replace it with a cord of the appropriate gauge wire for the current of the instrument. If there are any questions, contact an Authorized Service Center for more information.
- Before using any cleaning or decontamination method, other than those recommended by Beamex, users should check with an Authorized Service Center to insure the proposed method will not damage the equipment.
- If the instrument is used in a manner not in accordance with the equipment design, the operation of the instrument may be impaired or safety hazards may arise.
- The over-temperature cutout should be checked every 6 months to see that it is working properly. In order to check the user selected cutout, follow the controller directions for setting the cutout. Set the instrument temperature higher than the cutout. Check to see if the display shows cutout and the temperature is decreasing.

7.1 Regular Metrology Temperature Block performance analysis

For optimum performance and lowest possible uncertainty budgets, use the guidelines set forth below.

Accuracy drift

The display temperature of the Metrology Temperature Block will drift over time. This is due to a variety of factors affecting the temperature control PRT. Any PRT is subject to changes depending on how it is used and the environment it is used in. This is no different for any PRT in a calibration application. In addition, manufacturing variables in the sensing element itself can result in greater or lesser impact from use and environment. Oxidation and contamination from the sensor's environment will create changes requiring new calibration constants depending on the temperature range and normal operation of the instrument. Oxidation and contamination are generally not factors when Metrology Temperature Blocks are used exclusively below 200°C. Oxidation can form in the body of the PRT platinum sensor wire in the range of 300°C to 500°C. Contamination is primarily a problem following prolonged use above 500°C. Additionally, vibration from handling or transportation will strain the delicate PRT element, changing its resistance. Some of this strain may come out by annealing at a slightly higher temperature than the instrument is typically used at. It is recommended to avoid unnecessary temperature cycling. Cycling the temperature up and down between minimum and maximum temperatures excessively may also cause strain on the PRT element.

Effects from control sensor drift may be avoided by using an external temperature reference. In the case that the calibration of the display value is required, a program of monitoring and recalibration must be implemented, just as with any calibration standard. Regularly check the accuracy of the Metrology Temperature Block with an adequate temperature reference and keep records as a part of your instrument maintenance routine. When the accuracy drifts to a point where it is no longer acceptable, then have the instrument recalibrated. Your records will provide data for determining a calibration interval appropriate for your history of use and accuracy requirements.

Stability

The stability specification of the Metrology Temperature Block was determined under laboratory conditions of steady ambient temperature and air flow. While this instrument has been designed to minimize ambient effects, they will still have some effect. For the best results, avoid quickly-changing ambient temperatures and drafty conditions.

Axial Uniformity

Metrology Temperature Block axial uniformity should be checked periodically. Use the process outlined in EURAMET/cg-13/v.01 or a similar process. If, due to a drift in the differential thermocouples, the axial uniformity has changed outside the limits set by the user's uncertainty budget, adjust the axial gradient may be adjusted by trained personnel.

84

8 Troubleshooting

This section contains information on troubleshooting.

In the event that the Metrology Temperature Block appears to function abnormally, this section may help to find and solve the problem. Several possible problem conditions are described along with likely causes and solutions. If a problem arises, please read this section carefully and attempt to understand and solve the problem. If the Metrology Temperature Block seems faulty or the problem cannot otherwise be solved, contact an Authorized Service Center for assistance. Be sure to have the instrument model number, serial number, and voltage available.

8.1 Troubleshooting

Problem	Causes and Solutions	
The display is blank	Check the fuses. If a fuse blows, it may be due to a power surge or a component failure. Replace the fuse once. DO NOT replace the fuse with one of a higher current rating. Always replace the fuse with one of the same rating, voltage, and type. If the fuse blows a second time, it is likely caused by failure of a component part. Power Cord. Check that the power cord is plugged in and connected to the instrument. AC Mains Power. Insure the circuit supplying power to the instrument is on.	
The instrument heats slowly	Scan/Scan Rate. Check the Scan and Scan Rate settings. The Scan may be on with the Scan Rate set low.	
If the display shows an abnormal temperature	The sensor is disconnected, open or shorted. Please contact a Service Center for further instructions.	
If the display shows cutout	Cutout. The software cutout is set too low. Check and adjust the cutout setting by pressing "Exit" from the main screen.	
Temperature readout is not the actual temperature of the block OR Incorrect temperature reading	Noise. With the instrument stable, slowly rotate the the entire instrument. If no change occurs, the instrument may need to be calibrated. Contact an Authorized Service Center for calibration service. If the display changes more than twice the normal display deviation, another unit in the area could be emitting RF energy. Move the instrument to a different location and rotate it again. If the temperature is correct in this new area or deviates differently than the first area, RF energy is present in the room. If you have to perform the test in the effected area, use the comparison test to eliminate any possible errors. Operating Parameters. Insure that all operating parameters for the Metrology Temperature Block, reference therementer, and/or probe	
	Metrology Temperature Block, reference thermometer, and/or probe parameters match the Report of Calibration that was sent with the instrument and/or probe.	